Non-Euclidean Genetic FCM Clustering Algorithm

  • Sergio López García
  • Luis Magdalena
  • Juan R. Velasco
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 89)


The standard FCM clustering algorithm is a powerful mathematical tool widely used in many practical problems. Nevertheless, it is dependent on initial conditions and either the number of clusters and the distance definition must be predefined. In [15,11] the authors presented the Genetic FCM clustering, that improves the first and second drawbacks, but not the third one. This article shows how the definition of the distance can be included in the genetic structure. Several results applied to the Iris data set are also shown.


Cluster Algorithm Fuzzy Cluster Cluster Validity Fuzzy Partition Initial Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bezdek, J.C.; Pal, S.K. `Fuzzy Models for Pattern Recognition’. Chap. 1.3. in Pattern Recognition: Models and Approaches. IEEE Press, 1992.Google Scholar
  2. [2]
    Chiu, S.L. `A cluster estimation method with extension to fuzzy model identification’ in Proc. FUZZ-IEEE’94, pp. 1240–1245. 1994.Google Scholar
  3. [3]
    Dunn, J. `A fuzzy relative of the isodata process and its use in detecting compact well separated clusters’ in J. Cybernetics, 3(3):32–57. 1973.Google Scholar
  4. [4]
    Gath, I.; Geva, A.B. `Unsupervised optimal fuzzy clusterings’ in IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7):773–781. 1989.Google Scholar
  5. [5]
    Goldberg, D. Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, 1989.Google Scholar
  6. [6]
    Hall, L.; Bezdek, J.C.;Boggavarpu, S.; Bensaid S. `Genetic Fuzzy Clustering’ in Proc. NAFIPS’94. pp. 411–415. 1994.Google Scholar
  7. [7]
    Keller, A.; Klawonn, F. `Fuzzy Clustering with Weighting of Data Variables’ in EUSFLAT-ESTYLF Joint Conference 1999 pp. 497–500. 1999.Google Scholar
  8. [8]
    Klir, G.J.; Yuan, B. Fuzzy sets and fuzzy logic theory and applications. Prentice-Hall, 1995.Google Scholar
  9. [9]
    Liu, J.; Xie, W. `A genetics-based approach to fuzzy clustering’ in Proc. FUZZ-IEEE’95. pp 2233–2237. 1995.Google Scholar
  10. [10]
    López, S.; Velasco, J.R; Magdalena, L. `Generación de Particiones Borrosas mediante técnicas de Agrupamiento mejoradas con Algoritmos Genéticos’ in Revista Iberoamericana de Inteligencia Artificial, N° 5 V/98, pg. 74–79. 1998.Google Scholar
  11. [11]
    ]López, S.; Magdalena, L.; Velasco, J.R. `Genetic Fuzzy C-Means Algorithm for the Automatic Generation of Fuzzy Partitions’ in Proc. IPMU’98. pp. 705–711 Paris. 1998.Google Scholar
  12. [12]
    López, S.; Magdalena, L.; Velasco, J.R. `Cluster validity for FCM clustering algorithm using uniform data’ in EUSFLAT-ESTYLF Joint Conference 1999, pp. 501–504. 1999.Google Scholar
  13. [13]
    Nascimento, S.; Moura-Pires, F. `A genetic fuzzy c-means algorithm’ in Proc IPMU’96. pp 745–750. 1996.Google Scholar
  14. [14]
    Nascimento, S.; Moura-Pires, F. `A genetic fuzzy c-means algorithm’ in Proc IPMU’96. pp 745–750. 1996.Google Scholar
  15. [15]
    Pal, N.R.; Bezdek, J. `On cluster validity for the fuzzy c-means model’ in IEEE Trans. Fuzzy Systems, 3(3):370–379. 1995.Google Scholar
  16. [16]
    Velasco, J.R.; López S.; Magdalena, L. `Genetic Fuzzy Clustering for the definition of the fuzzy sets’ in Proc. FUZZ-IEEE’97., pp. 1665–1670. 1997.Google Scholar
  17. [17]
    Windham, M.P. `Cluster validity for the Fuzzy c-Means Clustering Algorithm’ in IEEE Trans. on Pattern Analysis and Machine Intelligence, 4(4):357–363. July, 1982.Google Scholar
  18. [18]
    ]Xie, X.; Beni, G. `A validity measure for fuzzy clustering’ in IEEE Trans. Pattern Analysis and Machine Intelligence, 13(8):841–847. 1991.Google Scholar
  19. [19]
    Yager, R.R.; Filev, D.P. ‘Aproximate clustering via the Mountain Method’ in IEEE Trans. on Systems, Man and Cybernetics, 24 (8):1279–1284. August, 1994.Google Scholar
  20. [20]
    Yuan B.; Klir G.J.; Swan-Stone F.J. `Evolutionary Fuzzy C-Means clustering algorithm’ in Proc. FUZZ-IEEE’95, pp. 2221–2226. 1995.Google Scholar
  21. [21]
    Zadeh, L.A. `Fuzzy Sets’ in Information and Control, vol 8. pp. 338–352. 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Sergio López García
    • 1
  • Luis Magdalena
    • 2
  • Juan R. Velasco
    • 2
  1. 1.Lince Telecomunicaciones S.A. C/Ortega y Gasset, 100MadridSpain
  2. 2.ETSI TelecomunicacíonUPMMadridSpain

Personalised recommendations