Conditional Possibility and Necessity

  • Bernadette Bouchon-Meunier
  • Giulianella Coletti
  • Christophe Marsala
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 90)


We introduce the definition of a conditional possibility (and a conditional necessity by duality) as a primitive concept, ie a function whose domain is a set of conditional events. The starting point is a definition of conditional event E|H which differs from many seemingly “similar” ones adopted in the relevant literature, which makes the third value depending on E|H. It turns out that this function t(E|H) can be taken as a conditional possibility by requiring “natural” property of closure of truth-values of the conditional events with respect to max and min. We show that other definitions of conditional possibility measures, present in the literature, are particular cases of the one proposed here. Moreover, we introduce a concept of coherence for conditional possibility and a relevant characterization theorem, given in terms of a class of unconditional possibility measures.


Conditional Probability Boolean Algebra Conditional Event Possibility Measure Primitive Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bouchon-Meunier. Fuzzy inference and conditional possibility distributions. Fuzzy Sets and Systems, 23: 23–41, 1987.MathSciNetGoogle Scholar
  2. 2.
    B. Bouchon-Meunier, G. Coletti and C. Marsala. Independence and Possibilistic Conditioning. Workshop on Conference Partial Knowledge and Uncertainty: Independence, Conditioning, Inference, Roma, Italy, May 2000.Google Scholar
  3. 3.
    B. Bouchon-Meunier, G. Coletti and C. Marsala. Independence and Possibilistic Conditioning. in Journal of Mathematical Analysis, to appear.Google Scholar
  4. 4.
    P. Calabrese. An algebraic synthesis of the foundations of logic and probability, Information Sciences 42, 187–237, 1987.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    G. Coletti. Coherent numerical and ordinal probabilistic assessments. IEEE Transactions on Systems, Man, and Cybernetics, 24: 1747–1754, 1994.MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Coletti and R. Scozzafava. Characterization of coherent conditional probabilities as a tool for their assessment and extension. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 4: 103–127, 1996.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    G. Coletti and R. Scozzafava. Conditioning and Inference in Intelligent Systems. Soft Computing, 3 (3): 118–130, 1999CrossRefGoogle Scholar
  8. 8.
    L.M. De Campos, J.F. Huete, S. Moral. Possibilistic independence, in Proceeding of EUFIT 95, Verlag Mainz and Wisseschaftverlag, Aachen,1: 69–73, 1995Google Scholar
  9. 9.
    L.M. de Campos, J.F. Huete. Independence concepts in possibility theory, Fuzzy sets and Systems 103, part I, pp. 127–152, part II, pp. 487–505, 1999.Google Scholar
  10. 10.
    G. de Cooman. Possibility Theory II: Conditional possibility, Int. J. General System, 25: 325–351, 1997.MATHCrossRefGoogle Scholar
  11. 11.
    B. de Finetti. Sull’impostazione assiomatica del calcolo delle probabilità. Annali Univ. Trieste, 19: 3–55, 1949.Google Scholar
  12. B. de Finetti. Engl. transl.: Ch.5 in Probability, Induction, Statistics, Wiley, London, 1972.Google Scholar
  13. 12.
    B. de Finetti. Sul significato soggettivo della probabilità. Fundamente Mathematicae, 17 (1931) 298–329Google Scholar
  14. B. de Finetti. Engl.transl.: in Induction and Probability (Eds. P. Monari, D.Cocchi), CLUEB, Bologna: 291–321, 1993.Google Scholar
  15. 13.
    B. de Finetti. Teoria delle Probabilità. Einaudi Torino, 1970. (English translation: Theory of Probability, London, Wiley 1975 ).Google Scholar
  16. 14.
    L.E. Dubins. Finitely additive conditional probabilities, conglomerability and disintegration. Ann. Probab., 3: 89–99, 1975.MathSciNetMATHCrossRefGoogle Scholar
  17. 15.
    D. Dubois, H. Prade. Conditioning in possibility and evidence theories - a logical viewpoint, in Uncertainty and Intelligent Systems (B. Bouchon, L. Saitta, R.R. Yager, eds.), Lecture Notes in Computer Science vol. 313,401–408, 1988.CrossRefGoogle Scholar
  18. 16.
    D. Dubois, H. Prade. Possibility theory. Plenum Press, New York, 1998.Google Scholar
  19. 17.
    D. Dubois, H. Prade. Basic notions of possibility theory. in the Handbook of Fuzzy Computation, E.H. Ruspini, P.P. Bonnissone and W. Pedrycz eds, 1998.Google Scholar
  20. 18.
    P. Fonck. Conditional independence in possibility theory, in: Proceeding of 10th Conference UAI (R.L. de Mantaras, P.Poole eds.), 221–226, Morgan Kaufman, San Francisco, 1994.Google Scholar
  21. 19.
    A. Gilio. Criterio di penalizzazione e condizioni di coherenza nella valutazione soggettiva della probabilità. it Boll. Un. Mat. Ital., (7) 4-B: 645–660, 1990.Google Scholar
  22. 20.
    I.R. Goodman, H.T. Nguyen. Conditional objects and the modeling of uncertainties, in Fuzzy computing (M.M. Gupta, T. Yamakawa, eds. ), North Holland, 1988.Google Scholar
  23. 21.
    I.R. Goodman, H.T. Nguyen, E.A. Walker. Conditional inference and logic for intelligent systems: a theory of measure-free conditioning, North Holland, Amsterdam, 1991Google Scholar
  24. 22.
    E. Hisdal. Conditional possibilities independence and noninteraction, Fuzzy Sets and Systems, 1: 299–309, 1978.MathSciNetCrossRefGoogle Scholar
  25. 23.
    P.H. Krauss. Representation of conditional probability measures on Boolean algebras. Acta Math. Acad. Scient. Hungar., 19: 229–241, 1968.MathSciNetMATHCrossRefGoogle Scholar
  26. 24.
    R. S. Lehman. On confirmation and rational betting. The Jour. of Symbolic Logic, 20: 251–262, 1955.MathSciNetMATHCrossRefGoogle Scholar
  27. 25.
    D. Lewis. Probabilities of conditionals and conditional probabilities, Phil. Rev. 85, 297–315, 1976.CrossRefGoogle Scholar
  28. 26.
    H.T. Nguyen. On conditional possibility distributions. Fuzzy Sets and Systems, 1: 299–309, 1978.MathSciNetMATHCrossRefGoogle Scholar
  29. 27.
    H.T. Nguyen, E. A. Walker. A First Course in Fuzzy Logic, CRC Press, Boca Raton, New York, London, Tokyo, 1997.Google Scholar
  30. 28.
    A. Ramer. Conditional possibility Readings in Fuzzy Sets for Intelligent Systems, D. Dubois, H. Prade and R.R. Yager eds, Morgan KaufmannGoogle Scholar
  31. 29.
    A. Rényi. On conditional probability spaces generated by a dimensionally ordered set of measures. Theor. Probab. Appl., 1: 61–71, 1956.MATHCrossRefGoogle Scholar
  32. 30.
    G. Schay. An algebra of conditional events, J. Math. Analysis and Applications, 24: 334–344, 1968.MathSciNetMATHCrossRefGoogle Scholar
  33. 31.
    J. Vejnarova. Conditional independance relations in possiblity theory. 1st International Symposium on Imprecise Probabilities and their applications, Ghent: 343–351, 1999.Google Scholar
  34. 32.
    L.A. Zadeh. Fuzzy sets as a basis for theory of possibility Fuzzy sets and Systems, 1: 3–28, 1978.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Bernadette Bouchon-Meunier
    • 1
  • Giulianella Coletti
    • 2
  • Christophe Marsala
    • 1
  1. 1.LIP6, Université Paris VIParisFrance
  2. 2.Dipartimento di Matematica e InformaticaUniversità di PerugiaPerugiaItaly

Personalised recommendations