Skip to main content

Approximation of Membership Functions and Aggregation Operators Using Splines

  • Chapter
Technologies for Constructing Intelligent Systems 2

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 90))

Abstract

A good choice of membership functions and aggregation operators is crucial to the behavior fuzzy systems. In many cases there are no theoretical criteria that would justify the use of one or another function, and they are selected based on their goodness of fit to empirical data. This paper discusses a general non-parametric approach to construction of membership functions and aggregation operators based on empirical data. This method is computer oriented: it does not produce operators in closed algebraic form, but the quality of fit and flexibility are superior to other methods. The method is also general, since it can produce membership functions and operators from any class. Restrictions to a particular class can be easily introduced. Examples based on published empirical data are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, J. (1969) On applications and theory of functioonal equations, Academic Press, New York.

    Google Scholar 

  2. Amaya Cruz, G.P. and Beliakov, G. (1995), Approximate reasoning and interpretation of laboratory tests in medical diagnostics, Cybernetics and Systems, 26, 713–729.

    Article  MATH  Google Scholar 

  3. Beatson, R.K. and Ziegler, Z. (1985). Monotonicity preserving surface interpolation, SIAM J. Numer. Anal. 22, 401–411.

    Article  MathSciNet  MATH  Google Scholar 

  4. Beliakov, G. (2000). Definition of general aggregation operators through similarity relations, Fuzzy Sets and Systems 114, 437–453.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beliakov, G. (1999). Aggregation operators as similarity relations, in Information, Uncertainty, Fusion., R. Yager, B. Bouchon-Meunier and L. Zadeh, eds, Kluwer, Boston, 331–342.

    Google Scholar 

  6. Beliakov, G. (2001) Shape preserving approximation using least squares splines, Approximation theory and applications,in press.

    Google Scholar 

  7. de Boor C. (1978). A practical guide to splines, Springer, Berlin — New York.

    Book  MATH  Google Scholar 

  8. Chen, J. and Otto, K. (1995). Constructing membership functions using interpolation and measurement theory, Fuzzy Sets and Systems 73, 313–327.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dierckx P. (1995). Curve and surface fitting with splines, Clarendon press, Oxford.

    MATH  Google Scholar 

  10. Dombi, J. (1982). Basic concepts for a theory of evaluation: The aggregative operator, Europ. J. Oper. Res. 10, 282–293.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dombi, J. (1990). Membership function as evaluation, Fuzzy Sets and Systems, 35, 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dongarra, J.J. and Grosse, E. (1987). Distribution of mathematical software via electronic mail, Comm. ACM 30, 403–440.

    Article  Google Scholar 

  13. Dubois, D. and Prade, H. (1985) A review of fuzzy set aggregation connectives, Information Sciences 36, 85–121.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyckhoff, H. and Pedrycz, W. (1984). Generalized means as model of compensative connectives, Fuzzy Sets and Systems 14, 143–154.

    Article  MathSciNet  MATH  Google Scholar 

  15. Elfving, T. and Andersson, L.-E. (1989). An algorithm for computing constrained smoothing spline functions, Numer.Math. 52, 583–595.

    Article  MathSciNet  Google Scholar 

  16. Eubank, R. L. (1999) Nonparametric regression and spline smoothing, Marcel Dekker, New York.

    MATH  Google Scholar 

  17. Filev, D. and Yager, R. (1998). On the issue of obtaining OWA operator weights, Fuzzy Sets and Systems 94, 157–169.

    Article  MathSciNet  Google Scholar 

  18. Halmos, P. (1958). Finite-dimensional vector spaces, D.van Nostrand Company, Princeton.

    MATH  Google Scholar 

  19. Hanson, R.J. and Haskell, K.H. (1982). Algorithm 587. Two algorithms for the linearly constrained least squares problem, ACM Trans. Math. Software 8, 323–333.

    Article  MATH  Google Scholar 

  20. Hisdal, E. (1998) Logical structures for representation of knowledge and uncertainty, Physica-Verlag, New York.

    MATH  Google Scholar 

  21. Klir, G. and Folger, T. (1992). Fuzzy sets, uncertainty, and information, Prentice Hall, Singapore.

    Google Scholar 

  22. Lawson, C. and Hanson, R. (1995). Solving least squares problems, SIAM, Philadelphia.

    Book  MATH  Google Scholar 

  23. Mizumoto, M. (1989). Pictorial representations of fuzzy connectives, Part I: Cases of t-norms, t-conorms and averaging operators, Fuzzy Sets and Systems 31, 217–242.

    Article  MathSciNet  Google Scholar 

  24. Norwich, A.M. and Turksen, I.B. (1984). A model for the measurement of membership and the consequences of its empirical implementation, Fuzzy Sets and Systems, 12, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ramsay, J.O. (1988). Monotone regression splines in action (with comments), Stat. Science 3, 425–461.

    Article  Google Scholar 

  26. Schweizer, B. and Sklar, A. (1961) Associative functions and statistical triangle inequalities, Publ. Mathematicae Debrecen, 8, 169–186.

    MathSciNet  MATH  Google Scholar 

  27. Yager, R. (1978). Fuzzy decision making including unequal objectives, Fuzzy Sets and Systems 1 87–95.

    Article  MATH  Google Scholar 

  28. Yager, R. (1988). On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Syst.,Man, Cybern. 18, 183–190.

    MathSciNet  MATH  Google Scholar 

  29. Yager, R. (1998). Including importances in OWA aggregations using fuzzy systems modeling, IEEE Trans. Fuzzy Syst 6, 286–294.

    Article  Google Scholar 

  30. Zimmermann, H.-J. (1996). Fuzzy set theory - and its applications, Kluwer, Boston.

    MATH  Google Scholar 

  31. Zimmermann, H.-J. and Zysno, P. (1980). Latent connectives in human decision making, Fuzzy Sets and Systems, 4, 37–51.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beliakov, G. (2002). Approximation of Membership Functions and Aggregation Operators Using Splines. In: Bouchon-Meunier, B., Gutiérrez-Ríos, J., Magdalena, L., Yager, R.R. (eds) Technologies for Constructing Intelligent Systems 2. Studies in Fuzziness and Soft Computing, vol 90. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1796-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1796-6_13

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2504-6

  • Online ISBN: 978-3-7908-1796-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics