Advertisement

Fuzzy Integral Equations

  • James J. Buckley
  • Esfandiar Eslami
  • Thomas Feuring
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 91)

Abstract

Consider the Fredholm integral equation of the second kind [5]
$$f(x) = g(x) + \lambda \int\limits_a^b {K(x,y)f(y)dy}$$
(11.1)
where K(x, y) is the kernel of the transformation assumed to be continuous for ax,yb, λ > 0, g(x) is a known function continuous on [a, b]. and f(x) is the unknown function assumed to be continuous for axb. In this chapter we will allow g(x) to be a fuzzy function and/or λ may be a triangular shaped fuzzy number.

Keywords

Integral Equation Fuzzy Number Classical Solution Fredholm Integral Equation Interval Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J.J. Buckley, T. Feuring and Y. Hayashi: Fuzzy Integral Equations, Proc. FUZZ-IEEE 2000, May 710, San Antonio, Texas, Vol. I, pp. 319–323.Google Scholar
  2. [2]
    M. Friedman, M. Ma and A. Kandel: Numerical Solutions to Fuzzy Differential and Integral Equations, Fuzzy Sets and Systems, 106 (1999), pp. 35–48.CrossRefGoogle Scholar
  3. [3]
    M. Friedman, M. Ming and A. Kandel: Solutions to Fuzzy Integral Equations with Arbitrary Kernels, Int. J. Approximate Reasoning, 20 (1999), pp. 249–262.CrossRefGoogle Scholar
  4. [4]
    M. Friedman, M. Ming and A. Kandel: On Fuzzy Integral Equations, Fundamenta Informaticae, 37 (1999), pp. 89–99.Google Scholar
  5. [5]
    J. Indritz, Methods in Analysis, Macmillan, NY, 1963, Chapter 4.Google Scholar
  6. [6]
    J. Mordeson and W. Newman, Fuzzy Integral Equations, Information Sciences, 87 (1995), pp. 215–229.CrossRefGoogle Scholar
  7. [7]
    J. Mordeson and W. Newman, Fuzzy Integral Equations, in: P.P. Wang (ed.), Advances in Fuzzy Theory and Technology, Vol. III, Duke University, Duham, NC, 1995, pp. 81–97.Google Scholar
  8. [8]
    J.Y. Park and J.U. Jeong: A Note one Fuzzy Integral Equations. Fuzzy Sets and Systems, 108 (1999), pp. 193–200.CrossRefGoogle Scholar
  9. [9]
    J.Y. Parkand and J.U. Jeong: On the Existence and Uniqueness of Solutions of Fuzzy Volterra-Fredholm Integral Equations, Fuzzy Sets and Systems, 115 (2000), pp. 425–431.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • James J. Buckley
    • 1
  • Esfandiar Eslami
    • 2
  • Thomas Feuring
    • 3
  1. 1.Mathematics DepartmentUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of MathematicsShahid Bahonar UniversityKermanIran
  3. 3.Electrical Engineering and Computer ScienceUniversity of SiegenSiegenGermany

Personalised recommendations