Fuzzy Eigenvalues

  • James J. Buckley
  • Esfandiar Eslami
  • Thomas Feuring
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 91)


The fuzzy eigenvalue problem is to solve the equation.


Fuzzy Number Triangular Fuzzy Number Interval Arithmetic Trapezoidal Fuzzy Number Fuzzy Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.J. Buckley: Fuzzy Hierarchical Analysis, Fuzzy Sets and Systems, 17 (1985), pp. 233–247.CrossRefGoogle Scholar
  2. [2]
    J.J. Buckley: Fuzzy Complex Numbers, Fuzzy Sets and Systems, 33 (1989), pp. 333–345.CrossRefGoogle Scholar
  3. [3]
    J.J. Buckley: Fuzzy Eigenvalues and Input—Output Analysis, Fuzzy Sets and Systems, 34 (1990), pp. 187–195.CrossRefGoogle Scholar
  4. [4]
    J.J. Buckley and Y. Qu: Fuzzy Complex Analysis: Differentiation, Fuzzy Sets and Systems, 41 (1991), pp. 269–284.CrossRefGoogle Scholar
  5. [5]
    J.J. Buckley: Fuzzy Complex Analysis: Integration, Fuzzy Sets and Systems, 49 (1992), 171–179.CrossRefGoogle Scholar
  6. [6]
    J.J. Buckley and Y.R.R. Uppuluri: Fuzzy Hierarchical Analysis, in: V.T. Covello, L.B. Lave, A. Moghissi, and V.R.R. Uppuluri (eds.), Uncertainty and Risk Assessment, Risk Management and Decision Making, Plenum, N.Y., 1984, pp. 389–401.Google Scholar
  7. [7]
    J.J. Buckley, Th. Feuring and Y. Hayashi: Fuzzy Hierarchical Analysis Revisited, European J. Operational Research, 129 (2001), pp. 48–64.CrossRefGoogle Scholar
  8. [8]
    J.J. Buckley, Th. Feuring and Y. Hayashi: Fuzzy Eigenvalues, Fuzzy Sets and Systems. Under revision.Google Scholar
  9. [9]
    R. Csutora and J.J. Buckley: Hierarchical Analysis: The Lambda-Max Method, Fuzzy Sets and Systems, 120 (2001), pp. 181–195.CrossRefGoogle Scholar
  10. [10]
    S. Karlin: Mathematical Methods and Theory in Games, Programming and Economics, Addison—Wesley, Reading, MA, 1959.Google Scholar
  11. [11]
    A. de Korvin and R. Kleyle: Fuzzy Analytical Hierarchical Processes, J. Intelligent and Fuzzy Systems, 7 (1999), pp. 387–400.Google Scholar
  12. [12]
    K. Lancaster: Mathematical Economics, Macmillan, Toronto, 1968.Google Scholar
  13. [13]
    L.C. Leung and D. Cao: On Consistency and Ranking of Alternatives in Fuzzy AHP, European J. Operational Research, 124 (2000), pp. 102–113.CrossRefGoogle Scholar
  14. [14]
    T.L. Saaty: A Scaling Method for Priorities in Hierarchical Structures, Journal of Mathematical Psychology, 15 (1977), pp. 234–281.CrossRefGoogle Scholar
  15. [15]
    T.L. Saaty: Exploring the Interface Between Hierarchies, Multiple Objectives and Fuzzy Sets, Fuzzy Sets and Systems, 1 (1978), pp. 57–68.CrossRefGoogle Scholar
  16. [16]
    T.L. Saaty: The Analytic Hierarchy Process, McGraw-Hill, N.Y., 1980.Google Scholar
  17. [17]
    T.L. Saaty: Multicriteria Decision Making: The Analytic Hierarchy Process, RWS Publications, Pittsburgh, 1990.Google Scholar
  18. [18]
    T.L. Saaty: Fundamentals of Decision Making and Priority Theory With the Analytic Hierarchy Process, RWS Publications, Pittsburgh, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • James J. Buckley
    • 1
  • Esfandiar Eslami
    • 2
  • Thomas Feuring
    • 3
  1. 1.Mathematics DepartmentUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of MathematicsShahid Bahonar UniversityKermanIran
  3. 3.Electrical Engineering and Computer ScienceUniversity of SiegenSiegenGermany

Personalised recommendations