Skip to main content

Knowledge Discovery with Words Using Cartesian Granule Features: An Analysis for Classification Problems

  • Chapter
Data Mining, Rough Sets and Granular Computing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 95))

  • 275 Accesses

Abstract

Cartesian granule features were originally introduced to address some of the shortcomings of existing forms of knowledge representation such as decomposition error and transparency, and also to enable the paradigm modelling with words through related learning algorithms. This chapter presents a detailed analysis of the impact of granularity on Cartesian granule features models that are learned from example data in the context of classification problems. This analysis provides insights on how to effectively model problems using Cartesian granule features using various levels of granulation, granule characterizations, granule dimensionalies and granule generation techniques. Other modelling with words approaches such as the data browser [1, 2] and fuzzy probabilistic decision trees [3] are also examined and compared. In addition, this chapter provides a useful platform for understanding many other learning algorithms that may or may not explicitly manipulate fuzzy events. For example, it is shown how a naive Bayes classifier is equivalent to crisp Cartesian granule feature classifiers under certain conditions.

Part of the work reported here was carried out while at the Advance Computing Research Centre, University of Bristol, Bristol, UK. This part of the work was supported by the European Community Marie Curie Fellowship Program and by DERA (UK) under grant 92W69.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, J. F., Martin, T. P., and Pilsworth, B. W. (1995). FRIL - Fuzzy and Evidential Reasoning in A.I. Research Studies Press(Wiley Inc.).

    Google Scholar 

  2. Baldwin, J. F., and Martin, T. P. (1995). “Fuzzy Modelling in an Intelligent Data Browser.” In the proceedings of FUZZ-IEEE, Yokohama, Japan, 11711176.

    Google Scholar 

  3. Baldwin, J. F., Lawry, J., and Martin, T. P. (1997). “Mass assignment fuzzy ID3 with applications.” In the proceedings of Fuzzy Logic: Applications and Future Directions Workshop, London, UK, 278–294.

    Google Scholar 

  4. Quinlan, J. R. (1986). “Induction of Decision Trees”, Machine Learning, 1 (1): 86–106.

    Google Scholar 

  5. Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  6. Ruspini, E. H. (1969). “A New Approach to Clustering”, Inform. Control, 15 (1): 22–32.

    Article  MATH  Google Scholar 

  7. Zadeh, L. A. (1994). “Soft Computing and Fuzzy Logic”, IEEE Software, 11 (6): 48–56.

    Article  Google Scholar 

  8. Zadeh, L. A. (1996). “Fuzzy Logic = Computing with Words”, IEEE Transactions on Fuzzy Systems, 4 (2): 103–111.

    Article  MathSciNet  Google Scholar 

  9. Shanahan, J. G. (2000). Soft computing for knowledge discovery: Introducing Cartesian granule features. Kluwer Academic Publishers, Boston.

    Google Scholar 

  10. Baldwin, J. F., Martin, T. P., and Shanahan, J. G. (1998). “Aggregation in Cartesian granule feature models.” In the proceedings of IPMU, Paris, 6.

    Google Scholar 

  11. Shanahan, J. G. (1998). “Cartesian Granule Features: Knowledge Discovery of Additive Models for Classification and Prediction”, PhD Thesis, Dept. of Engineering Mathematics, University of Bristol, Bristol, UK.

    Google Scholar 

  12. Baldwin, J. F. (1993). “Evidential Support logic, FRIL and Case Based Reasoning”, Int. J. of Intelligent Systems, 8 (9): 939–961.

    Article  MATH  Google Scholar 

  13. Baldwin, J. F., Lawry, J., and Martin, T. P. (1996). “Efficient Algorithms for Semantic Unification.” In the proceedings of IPMU, Granada, Spain, 527532.

    Google Scholar 

  14. Lindley, D. V. (1985). Making decisions. John Wiley, Chichester.

    Google Scholar 

  15. Kohavi, R., and John, G. H. (1997). “Wrappers for feature selection”, Artificial Intelligence, 97: 273–324.

    Article  MATH  Google Scholar 

  16. Baldwin, J. F. (1995). “Machine Intelligence using Fuzzy Computing.” In the proceedings of ACRC Seminar (November),University of Bristol.

    Google Scholar 

  17. Miller, G. A. (1956). “The magical number seven, plus or minus two: some limits on our capacity to process information”, Psychological Review, 63: 8197.

    Article  Google Scholar 

  18. Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

    Book  MATH  Google Scholar 

  19. Kohonen, T. (1984). Self-Organisation and Associative Memory. Springer-Verlag, Berlin.

    Google Scholar 

  20. Sugeno, M., and Yasukawa, T. (1993). “A Fuzzy Logic Based Approach to Qualitative Modelling”, IEEE Trans on Fuzzy Systems, 1(1): 7–31.

    Google Scholar 

  21. Zadeh, L. A. (1994). “Soft computing”, LIFE Seminar, LIFE Laboratory, Yokohama, Japan (February, 24), published in SOFT Journal, 6:1–10.

    Google Scholar 

  22. Baldwin, J. F., Martin, T. P., and Shanahan, J. G. (1997). “Structure identification of fuzzy Cartesian granule feature models using genetic programming.” In the proceedings of IJCAI Workshop on Fuzzy Logic in Artificial Intelligence, Nagoya, Japan, 1–11.

    Google Scholar 

  23. Silverman, B. W. (1986). Density estimation for statistics and data analysis. Chapman and Hall, New York.

    MATH  Google Scholar 

  24. Baldwin, J. F., and Pilsworth, B. W. (1997). “Genetic Programming for Knowledge Extraction of Fuzzy Rules.” In the proceedings of Fuzzy Logic: Applications and Future Directions Workshop, London, UK, 238–251.

    Google Scholar 

  25. Baldwin, J. F., and Martin, T. P. (1999). “Basic concepts of a fuzzy logic data browser with applications”, Report No. ITRC 250, Dept. of Engineering Maths, University of Bristol.

    Google Scholar 

  26. Weiss, S. M., and Indurkhya, N. (1998). Predictive data mining: a practical guide. Morgan Kaufmann.

    Google Scholar 

  27. Zell, A., Mamier, G., Vogt, M., and Mache, N. (1995). SNNS (Stuggart Neural Network Simulator) Version 4.1. Institute for Parallel and Distributed High Performance Systems (NPR), Applied Computer Science, University of Stuggart, Stuggart, Germany.

    Google Scholar 

  28. Moller, M. F. (1993). “A scaled conjugate gradient algorithm for fast supervised learning”, Neural Networks, 6: 525–533.

    Article  Google Scholar 

  29. Shanahan, J. G. (2000). “A comparison between naive Bayes classifiers and product Cartesian granule feature models”,Report No. In preparation, XRCE.

    Google Scholar 

  30. Breiman, L. (1996). “Bagging predictors”, Machine Learning, 66: 34–53.

    Google Scholar 

  31. Baldwin, J. F. (1992). “Fuzzy and Probabilistic Uncertainties”, In Encyclopaedia of AI, 2nd ed., Shapiro, ed., 528–537.

    Google Scholar 

  32. Baldwin, J. F. (1991). “Combining evidences for evidential reasoning”, International Journal of Intelligent Systems, 6 (6): 569–616.

    Article  MATH  Google Scholar 

  33. Sudkamp, T. (1992). “On probability-possibility transformation”, Fuzzy Sets and Systems, 51: 73–81.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zadeh, L. A. (1968). “Probability Measures of Fuzzy Events”, Journal of Mathematical Analysis and Applications, 23: 421–427.

    Article  MathSciNet  MATH  Google Scholar 

  35. Dubois, D., and Prade, H. (1983). “Unfair coins and necessary measures: towards a possibilistic interpretation of histograms”, Fuzzy sets and systems, 10: 15–20.

    Article  MathSciNet  MATH  Google Scholar 

  36. Baldwin, J. F. (1991). “A Theory of Mass Assignments for Artificial Intelligence”, In IJCAI ‘81 Workshops on Fuzzy Logic and Fuzzy Control, Sydney, Australia, Lecture Notes in Artificial Intelligence, A. L. Ralescu, ed., 22–34.

    Google Scholar 

  37. Klir, K. (1990). “A principle of uncertainty and information invariance”, International journal of general systems, 17 (2, 3): 249–275.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shanahan, J.G. (2002). Knowledge Discovery with Words Using Cartesian Granule Features: An Analysis for Classification Problems. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds) Data Mining, Rough Sets and Granular Computing. Studies in Fuzziness and Soft Computing, vol 95. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1791-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1791-1_3

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2508-4

  • Online ISBN: 978-3-7908-1791-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics