Granulation and Granularity via Conceptual Structures: A Perspective From the Point of View of Fuzzy Concept Lattices

  • Radim Bělohlávek
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 95)


A fundamental way of granulation the outer world performed by humans is that by forming concepts. We present a formal model of concepts and conceptual structures called fuzzy concept lattices which is a natural formalization of the Port-Royal approach to concepts. Fuzzy concepts, i.e. the induced fuzzy granules, obey a complete hierarchy w.r.t. subconcept-superconcept relation. Attention is paid to similarity relations (similarity of objects, concepts and conceptual structures are distinguished) and to logical precision both of which represent a systematic way to control the granularity and reduce the complexity of the conceptual structure. Applications in conceptual data analysis and representation of conceptual knowledge are discussed.


Complete Lattice Conceptual Structure Residuated Lattice Concept Lattice Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbeiten der Forschungsgruppe Begriffsanalyse bis 1989. Arbeiten der Forschungsgruppe Begriffsanalyse ab 1990.Google Scholar
  2. 2.
    Bélohlâvek R.: Lattices generated by binary fuzzy relations. Tatra Mount. Math. Publ. 16(1999), 11–19 (special, fuzzy set theory and applications).Google Scholar
  3. 3.
    Bélohlâvek R.: Fuzzy Galois connections. Math. Logic Quarterly 45 4 (1999) 497–504.Google Scholar
  4. Bélohlâvek R.: Fuzzy logical bidirectional associative memory for concepts representation. Joint Conf. Inf. Sciences’98 Proc., Vol. II, pp. 123–126,Durham, North Carolina, USA, 1998.Google Scholar
  5. 5.
    Bélohlâvek R.: Logical precision in concept lattices (submitted). Extended version of paper presented in Soft Computing’99 Conference,Genoa, Italy, 1999.Google Scholar
  6. 6.
    Bélohlâvek R.: Similarity relations in concept lattices. Journal of Logic and Computation (to appear).Google Scholar
  7. 7.
    Bélohlâvek R.: Lattices of fixed points of fuzzy Galois connections. Math. Logic Quarterly 471(2001) (to appear).Google Scholar
  8. 8.
    Bélohlâvek R.: Concept equations (submitted).Google Scholar
  9. 9.
    Birkhoff G.: Lattice Theory, 3-rd edition. AMS Col. Publ. 25, Providence, R. I., 1967.Google Scholar
  10. 10.
    Blyth T.S., Janowitz M.F.: Residuation Theory. Pergamon Press, London, 1972.MATHGoogle Scholar
  11. 11.
    Chajda I.: Algebraic Theory of Tolerance Relations. Palackÿ University Press, Olomouc, 1991.MATHGoogle Scholar
  12. 12.
    Czédli G.: Factor lattices by tolerances. Acta Sci. Math. (Szeged) 44 (1982), 35–42.MATHGoogle Scholar
  13. 13.
    Ganter B.: Lattice theory and formal concept analysis—a subjective introduction. Preprint MATH-AL-2–1994, Techical University Dresden, Dresden, 1994.Google Scholar
  14. 14.
    Ganter B., Wille R.: Applied lattice theory: formal concept analysis. In: Grätzer G.: General Lattice Theory. To appear.Google Scholar
  15. 15.
    Ganter B., Wille R., Wolff K. E.: Beiträge zur Begriffsanalyse. B. I. Wissenschaftsverlag, Mannheim, 1987.Google Scholar
  16. 16.
    Goguen J. A.: L-fuzzy sets. Journal of Math. Anal. Appl. 18 (1967), 145–174.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Goguen J. A.: The logic of inexact concepts. Synthese 19(1968–69), 325–373.Google Scholar
  18. 18.
    Grätzer G.: Universal Algebra. Princeton, Toronto, London, Melbourne, 1968.Google Scholar
  19. 19.
    Hjek P.: Metamathematics of Fuzzy Logic. Kluwer, 1998.Google Scholar
  20. 20.
    Höfler A.: Grundlehren der Logik ung Psychologie. G. Freytag, Leipzig, 1906.Google Scholar
  21. 21.
    Höhle U.: Commutative, residuated l-monoids. In: Höhle U., Klement E. P.: Non-Classical Logics and Their Applications To Fuzzy Subsets, Kluwer (Theory and decision library), 1995, pp. 53–106.Google Scholar
  22. 22.
    Höhle U.: On the fundamentals of fuzzy set theory. Journal of Math. Anal. Appl. 201 (1996), 786–826.MATHCrossRefGoogle Scholar
  23. 23.
    Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, Upper Saddle River, NJ, 1995.Google Scholar
  24. 24.
    Lukose D., Delugach H., Keeler M., Searle L., Sowa J. (Eds.): Conceptual Structures: Fulfilling Peirce’s Dream. Proc. of Fifth Int. Conf. on Conceptual Structures, ICCS’97. Springer-Verlag, Berlin/Heidelberg/New York, 1997.Google Scholar
  25. 25.
    Materna P.: Svët pojmv, a logika (The world of concepts and logic, in Czech). Filosofia, Prague, 199X.Google Scholar
  26. 26.
    Materna P.: Teorie pojmn: Bolzanovskâ a mnozinovâ tradice. (Theory of concepts: Bolzanean and set tradition, in Czech) Filozofickÿ Gasopis 45 (4) (1997), 547–557.Google Scholar
  27. 27.
    Materna P.: Objects and concepts. Acta Philosophica Fennica,to appear.Google Scholar
  28. 28.
    Novak V.: Paradigm, formal properties and limits of fuzzy logic. Int. J. General Systems 24 (4) (1996), 377–405.MATHCrossRefGoogle Scholar
  29. 29.
    Ore O.: Galois connexions. Trans. AMS 55 (1944), 493–513.MathSciNetMATHGoogle Scholar
  30. Pavelka J.: On fuzzy logic I, II, III. Zeitschrift fir Math. Logik und Grundl. Math. 25(1979), 45–52, 119–139, 447–464.Google Scholar
  31. 31.
    Peacocke C.: A Study of Concepts. MIT Press (A Bradford Book), Cambridge ( Massachusetts ), London (England ), 1992.Google Scholar
  32. 32.
    Rand A.: Introduction to Objectivist Epistemology. Meridian Book, 1990.Google Scholar
  33. 33.
    Sowa J. F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, MA, 1984.Google Scholar
  34. 34.
    Thagard P.: Mind. Introduction to Cognitive Science. MIT Press, 1996.Google Scholar
  35. 35.
    Tichÿ P.: The Foundations of Frege’s Logic. W. de Gruyter, Berlin, New York, 1988.Google Scholar
  36. 36.
    Tugendhat E., Wolf U.: Logisch-semantische Propädautik. Philipp Reclam jun., Stutgart 1986.Google Scholar
  37. 37.
    Turunen E.: Well-defined fuzzy sentential logic. Math. Logic Quarterly 41 (1995), 236–248.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Ward M., Dilworth R. P.: Residuated lattices. Trans. AMS 45 (1939), 335–354.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wille R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: I. Rival (Ed.): Ordered Sets. 445–470, Reidel, Dordrecht-Boston, 1982.CrossRefGoogle Scholar
  40. 40.
    Wille R.: Complete tolerance relations of concept lattices. In: Eigenthalet G. et al.: Contributions to General Algebra, vol. 3. Hölder-Pichler-Tempsky, Wien, 1985, pp. 397–415.Google Scholar
  41. 41.
    Wille R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications 23 (1992), 493–515.MATHCrossRefGoogle Scholar
  42. 42.
    Wille R.: Conceptual graphs and formal concept analysis. In [24], pp. 290–303.Google Scholar
  43. 43.
    Winston P. H.: Artifical Intelligence. 3-rd Ed. Addison Wesley, 1992.Google Scholar
  44. 44.
    Zâba G.: Logika. (Logic, in Czech) Hejda and Tucek, Praha, 1906.Google Scholar
  45. 45.
    Zadeh L.: Fuzzy sets. Information and Control 8 (3) (1965), 338–353.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Zadeh L. A.: Similarity relations and fuzzy orderings. Information Sciences 3 (1971), 159–176.MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Zadeh L.: The concept of a linguistic variableand its application to approximate reasoning I, II, III. Information Sciences 8(3)(1975), 199–251, 301–357, 9 (1975), 43–80.MathSciNetCrossRefGoogle Scholar
  48. 48.
    Zadeh L.: Towards the theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90 (2) (1997), 111–127.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Radim Bělohlávek
    • 1
  1. 1.Institute for Research and Applications of Fuzzy ModelingUniversity of OstravaOstravaCzech Republic

Personalised recommendations