Skip to main content

Genetic Algorithms for Feature Selection in Computer-Aided Diagnosis

  • Chapter
Computational Intelligence Processing in Medical Diagnosis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 96))

Abstract

One of the important practical applications of computer vision techniques is computer-aided diagnosis (CAD) in medical imaging. It has been shown that CAD can improve the accuracy of breast cancer detection and characterization by radiologists on mammograms. In this chapter, we discuss an important step — feature selection — in classifier design for CAD algorithms. Feature selection reduces the dimensionality of an available feature space and is therefore often used to prevent over-parameterization of a classifier. Many feature selection techniques have been proposed in the literature. We will illustrate the usefulness of genetic algorithms (GAs) for feature selection by comparing GA with a commonly used sequential selection method. A brief introduction to the GA is given and several examples using GA feature selection for the characterization of mammographic lesions are discussed. The examples illustrate the design of a fitness function for optimizing classification accuracy in terms of the receiver operating characteristics of the classifier, the dependence of GA performance on its evolution parameters, and the design of a fitness function tailored to a specific classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parkin, D.M., Pisani, P., and Ferlay, J. (1999), “Global cancer statistics,” CA Cancer J. Clin., vol. 49, pp. 33–64.

    Article  PubMed  CAS  Google Scholar 

  2. Greenlee, R.T., Murray, T., Bolden, S., and Wingo, P.A. (2000), “Cancer statistics, 2000,” CA Cancer J. Clin., vol. 50, pp. 7–33.

    Article  PubMed  CAS  Google Scholar 

  3. Feig, S.A. and Hendrick, R.E. (1993), Risk, Benefit, and Controversies in Mammographic Screening, in Syllabus: A categorical Course in Physics Technical Aspects of Breast Imaging, A.G. Haus and M.J. Yaffe, Editors. Radiological Society of North America, Inc, Oak Brook, IL. pp. 119–135.

    Google Scholar 

  4. Duffy, S.W. and Tabar, L. (2000), “Screening mammograpgy reevaluated,” Lancet, vol. 355, pp. 747–748.

    Article  PubMed  CAS  Google Scholar 

  5. Smart, C.R., Hendrick, R.E., Rutledge, J.H., and Smith, R.A. (1995), “Benefit of mammography screening in women ages 40 to 49 years: current evidence from randomized controlled trials,” Cancer, vol. 75, pp. 1619–1626.

    Article  PubMed  CAS  Google Scholar 

  6. Martin, J.E., Moskowitz, M., and Milbrath, J.R. (1979), “Breast cancer missed by mammography,” AJR, vol. 132, pp. 737–739.

    Article  PubMed  CAS  Google Scholar 

  7. Wallis, M.G., Walsh, M.T., and Lee, J.R. (1991), “A review of false negative mammography in a symptomatic population,” Clin. Radiol., vol. 44, pp. 13–15.

    Article  PubMed  CAS  Google Scholar 

  8. Bird, R.E., Wallace, T.W., and Yankaskas, B.C. (1992), “Analysis of cancers missed at screening mammography,” Radiol., vol. 184, pp. 613–617.

    CAS  Google Scholar 

  9. Harvey, J.A., Fajardo, L.L., and Innis, C.A. (1993), “Previous mammograms in patients with impalpable breast carcinomas: retrospective vs blinded interpretation,” AJR, vol. 161, pp. 1167–1172.

    Article  PubMed  CAS  Google Scholar 

  10. Adler, D.D. and Helvie, M.A. (1992), “Mammographic biopsy recommendations,” Curr. Op. Radiol., vol. 4, pp. 123–129.

    CAS  Google Scholar 

  11. Kopans, D.B. (1991), “The positive predictive value of mammography,” AJR, vol. 158, pp. 521–526.

    Article  Google Scholar 

  12. Shtern, F., Stelling, C., Goldberg, B., and Hawkins, R. (1995), “Novel technologies in breast imaging: national Cancer Institute perspective,” Society of Breast Imaging Conference, pp. 153–156.

    Google Scholar 

  13. Chan, H.P., Doi, K., Vyborny, C.J., Schmidt, R.A., Metz, C.E., Lam, K.L., Ogura, T., Wu, Y., and MacMahon, H. (1990), “Improvement in radiologists’ detection of clustered microcalcifications on mammograms. The potential of computer-aided diagnosis,” Invest. Radiol., vol. 25, pp. 1102–1110.

    Article  PubMed  CAS  Google Scholar 

  14. Kegelmeyer, W.P., Pruneda, J.M., Bourland, P.D., Hillis, A., Riggs, M.W., and Nipper, M.L. (1994), “Computer-aided mammographic screening for spiculated lesions,” Radiol., vol. 191, pp. 331–337.

    Google Scholar 

  15. Chan, H.-P., Sahiner, B., Helvie, M.A., Petrick, N., Roubidoux, M.A., Wilson, T.E., Adler, D.D., Paramagul, C., Newman, J.S., and Gopal, S.S. (1999), “Improvement of radiologists’ characterization of mammographic masses by computer-aided diagnosis: an ROC study,” Radiol., vol. 212, pp. 817–827.

    CAS  Google Scholar 

  16. Jiang, Y., Nishikawa, R.M., Schmidt, R.A., Metz, C.E., Giger, M.L., and Doi, K. (1999), “Improving breast cancer diagnosis with computer-aided diagnosis,” Acad. Rad., vol. 6, pp. 22–33.

    Article  CAS  Google Scholar 

  17. Kilday, J., Palmieri, F., and Fox, M.D. (1993), “Classifying mammographic lesions using computer-aided image analysis,” IEEE Trans. Med. Img., vol. 12, pp. 664–669.

    Article  CAS  Google Scholar 

  18. Chan, H.P., Wei, D., Helvie, M.A., Sahiner, B., Adler, D.D., Goodsitt, M.M., and Petrick, N. (1995), “Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space,” Phys. Med. Biol., vol. 40, pp. 857–876.

    Article  PubMed  CAS  Google Scholar 

  19. McNitt-Gray, M.F., Huang, H.K., and Sayre, J.W. (1995), “Feature selection in the pattern classification problem of digital chest radiograph segmentation,” IEEE Trans. Med. Img., vol. 14, pp. 537–547.

    Article  CAS  Google Scholar 

  20. Sahiner, B., Chan, H.P., Petrick, N., Wagner, R.F., and Hadjiiski, L. (2000), “Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size.,” Med. Phys., vol. 27, pp. 1509–1522.

    Article  PubMed  CAS  Google Scholar 

  21. Jain, A. and Zongker, D. (1997), “Feature selection: Evaluation, application, and small sample size performance,” IEEE Trans. Pat. Anal. Mach. Intell., vol. 19, pp. 153–158.

    Article  Google Scholar 

  22. Ferri, F.J., Pudil, P., Hatef, M., and Kittler, J. (1994), “Comparative study of techniques for large-scale feature selection,” Pattern Recognition in Practice, vol. IV, pp. 403–413.

    Google Scholar 

  23. Box, G.E.P. (1957), “Evolutionary operation: a method for increasing industrial productivity,” Appl. Stat., vol. 6, pp. 81–101.

    Article  Google Scholar 

  24. Holland, J.H. (1962), “Outline for a logical theory of adaptive systems,” J. Assoc. Comput. Mach., vol. 3, pp. 297–314.

    Article  Google Scholar 

  25. Fogel, L.J., Owens, A.J., and Walsh, M.J. (1966), Artificial Intelligence Through Simulated Evolution, Wiley, New York.

    Google Scholar 

  26. Forrest, S. (1993), “Genetic algorithms: principles of natural selection applied to computation,” Science, vol. 261, pp. 872–878.

    Article  PubMed  CAS  Google Scholar 

  27. Jain, A.K., Duin, R.P.W., and Mao, J. (2000), “Statistical pattern recognition: a review,” IEEE Trans. Pat. Anal. Mach. Intell., vol. 22, pp. 4–37.

    Article  Google Scholar 

  28. Cover, T.M. and Campenhpout, J.M.V. (1977), “On the possible orderings in the measurement selection problem,” IEEE Trans. Sys. Man. and Cybern., vol. 7, pp. 657–661.

    Article  Google Scholar 

  29. Cover, T.M. (1974), “The best two independent measurements are not the two best,” IEEE Trans. Sys. Man. and Cybern., vol. 6, pp. 116–117.

    Article  Google Scholar 

  30. Wu, Y., Giger, M.L., Doi, K., Vyborny, C.J., Schmidt, R.A., and Metz, C.E. (1993), “Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer,” Radiol., vol. 187, pp. 81–87.

    Google Scholar 

  31. Meisel, W.S. (1972), Computer-oriented approaches to pattern recognition, Academic Press, New York.

    Google Scholar 

  32. Duda, R.O. and Hart, P.E. (1973), Pattern Classification and Scene Analysis, Wiley, New York.

    Google Scholar 

  33. Raudys, S.J. and Jain, A.K. (1991), “Small sample size effects in statistical pattern recognition: recommendations for practitioners,” IEEE Trans. Pat. Anal. Mach. Intell., vol. 13, pp. 252–264.

    Article  Google Scholar 

  34. Narendra, P.M. and Fukunaga, K. (1977), “A branch and bound algorithm for feature subset selection,” IEEE Trans. Comput., vol. 26, pp. 917–922.

    Article  Google Scholar 

  35. Siedlecki, W. and Sklansky, J. (1989), “A note on genetic algorithm for large-scale feature selection,” Patt. Recog. Let., vol. 10, pp. 335–347.

    Article  Google Scholar 

  36. ]Brill, F., Brown, D., and Martin, W. (1992), “Fast genetic selection of features for neural network classifiers,” IEEE Trans. Neural Net., vol. 3, pp. 324–328.

    Article  CAS  Google Scholar 

  37. ]Kuncheva, L.I. and Jain, L.C. (1999), “Nearest neighbor classifier: simulataneous editing and feature selection,” Patt. Recog. Let., vol. 20, pp. 1149–1156.

    Article  Google Scholar 

  38. Kudo, M. and Sklansky, J. (2000), “Comparison of algorithms that select features for pattern classifiers,” Patt. Recog., vol. 33, pp. 2541.

    Article  Google Scholar 

  39. Kudo, M. and Sklansky, J. (1998), “A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers,” Kybernetika, vol. 34, pp. 429–434.

    Google Scholar 

  40. Sahiner, B., Chan, H.P., Petrick, N., Wei, D., Helvie, M.A., Adler, D.D., and Goodsitt, M.M. (1996), “Image feature selection by a genetic algorithm: Application to classification of mass and normal breast tissue on mammograms,” Med. Phys., vol. 23, pp. 1671–1684.

    Article  PubMed  CAS  Google Scholar 

  41. Sahiner, B., Chan, H., Petrick, N., Helvie, M., and Goodsitt, M. (1998), “Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis,” Phys. Med. Biol., vol. 43, pp. 2853–2871.

    Article  PubMed  CAS  Google Scholar 

  42. Chan, H.P., Sahiner, B., Lam, K.L., Petrick, N., Helvie, M.A., Goodsitt, M.M., and Adler, D.D. (1998), “Computerized analysis of mammographie microcalcifications in morphological and texture feature space,” Med. Phys., vol. 25, pp. 2007–2019.

    Article  PubMed  CAS  Google Scholar 

  43. Zheng, B., Chang, Y.-H., Wang, X.-H., Good, W.F., and Gur, D. (1999), “Feature selection for computerized mass detection in digitized mammograms by using a genetic algorithm,” Acad. Rad., vol. 6, pp. 327–332.

    Article  CAS  Google Scholar 

  44. Yamany, S.M., Khiani, K.J., and Faraq, A.A. (1997), “Application of neural networks and genetic algorithms in the classification of endothelial cells,” Patt. Recog. Let., vol. 18, pp. 1205–1210.

    Article  Google Scholar 

  45. Handels, H., Ross, T., Kreusch, J., Wolff, H.H., and Poppl, S.J. (1999), “Feature selection for optimized skin tumor recognition using genetic algorithms,” Art. Intel. Med., vol. 16, pp. 283–297.

    Article  CAS  Google Scholar 

  46. Kupinski, M.A. and Anastasio, M.A. (1999), “Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves,” IEEE Trans. Med. Img., vol. 18, pp. 675–685.

    Article  CAS  Google Scholar 

  47. Anastasio, M.A., Yoshida, H., Nagel, R., Nishikawa, R.M., and Doi, K. (1998), “A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms,” Med. Phys., vol. 25, pp. 1613–1620.

    Article  PubMed  CAS  Google Scholar 

  48. Gudmundsson, M., El-Kwae, E.A., and Kabuka, M.R. (1998), “Edge detection in medical images using a genetic algorithm,” IEEE Trans. Med. Img., vol. 17, pp. 469–474.

    Article  CAS  Google Scholar 

  49. Fujita, H., Hara, T., Jing, X., Matsumoto, T., Yoshimura, H., and Seki, K. (1995), “Automated detection of lung nodules by using a genetic algorithm technique in chest radiography,” Radiol., vol. 197 (P), pp. 426–426.

    Google Scholar 

  50. Pena-Reyes, C.A. and Sipper, M. (2000), “Evolutionary computation in medicine: an overview,” Art. Intel!. Med., vol. 19, pp. 1–23.

    Article  CAS  Google Scholar 

  51. Lachenbruch, P.A. (1975), Discriminant Analysis, Hafner Press, New York.

    Google Scholar 

  52. Metz, C.E. (1986), “ROC methodology in radiologie imaging,” Invest. Radiol., vol. 21, pp. 720–733.

    Article  PubMed  CAS  Google Scholar 

  53. Dorfman, D. and Alf Jr, E. (1969), “Maximum likelihood estimation of parameters of signal detection theory and determination of confidence intervals-rating method data.,” J. Math. Psych., vol. 6, pp. 487–496.

    Article  Google Scholar 

  54. Metz, C.E., Herman, B.A., and Shen, J.H. (1998), “Maximum-likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data,” Stat. Med.,vol. 17, pp. 1033–1053.

    Google Scholar 

  55. Tatsuoka, M.M. (1988), Multivariate Analysis, Techniques for Educational and Psychological Research, 2nd ed. Macmillan, New York.

    Google Scholar 

  56. Norusis, M.J. (1993), SPSS for Windows Release 6 Professional Statistics, SPSS Inc., Chicago, IL.

    Google Scholar 

  57. Wei, D., Chan, H.P., Helvie, M.A., Sahiner, B., Petrick, N., Adler, D.D., and Goodsitt, M.M. (1995), “Classification of mass and normal breast tissue on digital mammograpms: multiresolution texture analysis,” Med. Phys., vol. 22, pp. 1501–1513.

    Article  PubMed  CAS  Google Scholar 

  58. Chan, H.P., Wei, D., Lam, K.L., Sahiner, B., Helvie, M.A., Adler, D.D., and Goodsitt, M.M. (1995), “Classification of malignant and benign microcalcifications by texture analysis,” Med. Phys., vol. 22, pp. 938.

    Google Scholar 

  59. Chan, H.P., Sahiner, B., Wei, D., Helvie, M.A., Adler, D.D., and Lam, K.L. (1995), “Computer-aided diagnosis in mammography: Effect of feature classifier on characterization of microcalcifications,” Radiol., vol. 197 (P), pp. 425.

    Google Scholar 

  60. Chan, H.P., Sahiner, B., Petrick, N., Helvie, M.A., Leung, K.L., Adler, D.D., and Goodsitt, M.M. (1997), “Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network,” Phys. Med. Biol., vol. 42, pp. 549–567.

    Article  PubMed  CAS  Google Scholar 

  61. Chan, H.P., Niklason, L.T., Ikeda, D.M., and Adler, D.D. (1992), “Computer-aided diagnosis in mammography: detection and characterization of microcalcifications,” Med. Phys., vol. 19, pp. 831.

    Google Scholar 

  62. Chan, H.P., Wei, D., Lam, K.L., Lo, S.-C.B., Sahiner, B., Helvie, M.A., and Adler, D.D. (1995), “Computerized detection and classification of microcalcifications on mammograms,” Proc. SPIE Med. Img., vol. 2434, pp. 612–620.

    Article  Google Scholar 

  63. Sahiner, B., Chan, H.P., Petrick, N., Wei, D., Helvie, M.A., Adler, D.D., and Goodsitt, M.M. (1996), “Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images,” IEEE Trans. Med. Img., vol. 15, pp. 598–610.

    Article  CAS  Google Scholar 

  64. Haralick, R.M., Shanmugam, K., and Dinstein, I. (1973), “Texture features for image classification,” IEEE Trans. Sys. Man. and Cybern., vol. SMC-3, pp. 610–621.

    Google Scholar 

  65. ]Metz, C.E., Wang, P.L., and Kronman, H.B. (1984), “A new approach for testing the significance for differences between ROC curves measured from correlated data,” in: Deconinck, F. (Ed.), Information Processing in Medical Imaging, The Hague, Martinus Nijhoff, pp. 432–445.

    Chapter  Google Scholar 

  66. Vyborny, C.J. and Giger, M.L. (1994), “Computer vision and artificial intelligence in mammography,” AJR, vol. 162, pp. 699–708.

    Article  PubMed  CAS  Google Scholar 

  67. Petrick, N., Chan, H.P., Wei, D., Sahiner, B., Helvie, M.A., and Adler, D.D. (1996), “Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification,” Med. Phys., vol. 23, pp. 1685–1696.

    Article  PubMed  CAS  Google Scholar 

  68. Wei, D., Chan, H.P., Petrick, N., Sahiner, B., Helvie, M.A., Adler, D.D., and Goodsitt, M.M. (1997), “False-positive reduction technique for detection of masses on digital mammograms: global and local multiresolution texture analysis,” Med. Phys., vol. 24, pp. 903–914.

    Article  PubMed  CAS  Google Scholar 

  69. ]Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986), “Learning internal representation by error propagation,” in: Rumelhart, D.E. and McClelland, J.L. (Eds.), Parallel Distributed Processing, vol. 1, MIT Press, Cambridge, MA.

    Google Scholar 

  70. Hermann, G., Janus, C., Schwartz, I.S., Krivisky, B., Bier, S., and Rabinowitz, J.G. (1987), “Nonpalpable breast lesions: Accuracy of prebiopsy mammographie diagnosis,” Radiol., vol. 165, pp. 323–326.

    CAS  Google Scholar 

  71. Hall, F.M., Storella, J.M., Silverstond, D.Z., and Wyshak, G. (1988), “Nonpalpable breast lesions: recommendations for biopsy based on suspicion of carcinoma at mammography,” Radiol., vol. 167, pp. 353.

    CAS  Google Scholar 

  72. Jacobson, H.G. and Edeiken, J. (1990), “Biopsy of occult breast lesions: analysis of 1261 abnormalities,” JAMA, vol. 263, pp. 2341–2343.

    Article  Google Scholar 

  73. ]Jiang, Y., Metz, C.E., and Nishikawa, R.M. (1996), “A receiver operating characteristic partial area index for highly sensitive diagnostic tests,” Radiol., vol. 201, pp. 745–750.

    CAS  Google Scholar 

  74. Sahiner, B., Chan, H.P., Petrick, N., Helvie, M.A., and Goodsitt, M.M. (1998), “Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis,” Med. Phys., vol. 25, pp. 516–526.

    Article  PubMed  CAS  Google Scholar 

  75. Weszka, J.S., Dyer, C.R., and Rosenfeld, A. (1976), “A comparative study of texture measures for terrain classification,” IEEE Trans. Sys. Man. and Cybern., vol. 6, pp. 269–285.

    Article  Google Scholar 

  76. Galloway, M.M. (1975), “Texture classification using gray level run lengths,” Comp. Graph. Img Proc., vol. 4, pp. 172–179.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sahiner, B., Chan, H.P., Petrick, N. (2002). Genetic Algorithms for Feature Selection in Computer-Aided Diagnosis. In: Schmitt, M., Teodorescu, HN., Jain, A., Jain, A., Jain, S., Jain, L.C. (eds) Computational Intelligence Processing in Medical Diagnosis. Studies in Fuzziness and Soft Computing, vol 96. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1788-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1788-1_15

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2509-1

  • Online ISBN: 978-3-7908-1788-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics