Skip to main content

Aggregation of Interacting Criteria by Means of the Discrete Choquet Integral

  • Chapter
Aggregation Operators

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 97))

Abstract

The most often used operator to aggregate criteria in decision making problems is the classical weighted arithmetic mean. In many problems however, the criteria considered interact, and a substitute to the weighted arithmetic mean has to be adopted. Under rather natural conditions, the discrete Choquet integral is proved to be an adequate aggregation operator that extends the weighted arithmetic mean by the taking into consideration of the interaction among criteria. The axiomatic that supports the Choquet integral is presented and some subfamilies are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge, Principes de combinatoire (Dunod, Paris, 1968 ). English translation: Principles of combinatorics ( Academic Press, New York, 1971 ).

    Google Scholar 

  2. A. Chateauneuf and J. Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17 (1989) 263–283.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Choquet, Theory of capacities, Annales de l’Institut Fourier 5 (1953) 131–295.

    Article  MathSciNet  Google Scholar 

  4. L. M. de Campos, M. T. Lamata and S. Moral, A unified approach to define fuzzy integrals, Fuzzy Sets and Systems 39 (1991) 75–90.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Fujishige, Characterization of subdifferentials of submodular functions and its relation to Lovâsz extension of submodular functions. Report No. 82241-OR, Inst. für Okonometrie and Operations Research, Bonn, 1982.

    Google Scholar 

  6. M. Grabisch, On equivalence classes of fuzzy connectives: the case of fuzzy integrals, IEEE Trans. Fuzzy Systems 3 (1) (1995) 96–109.

    Article  Google Scholar 

  7. M. Grabisch, The application of fuzzy integrals in multicriteria decision making, European Journal of Operational Research 89 (1996) 445–456.

    Article  MATH  Google Scholar 

  8. M. Grabisch, k-order additive discrete fuzzy measures and their representation, Fuzzy Sets and Systems 92 (1997) 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Grabisch, Alternative representations of OWA operators, in: R. R. Yager and J. Kacprzyk (eds.), The Ordered Weighted Averaging Operators: Theory and Applications, (Kluwer Academic Publisher, 1997 ) 73–85.

    Google Scholar 

  10. M. Grabisch, J.-L. Marichal, and M. Roubens, Equivalent representations of set functions, Mathematics of Operations Research 25 (2000) 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Grabisch, T. Murofushi, and M. Sugeno (eds.), Fuzzy Measures and Integrals–Theory and Applications. Series: Studies in Fuzziness and Soft Computing (Physica Verlag, Heidelberg, 2000 ).

    MATH  Google Scholar 

  12. P. L. Hammer and S. Rudeanu, Boolean methods in operations research and related areas ( Springer, Berlin, 1968 ).

    Book  MATH  Google Scholar 

  13. U. Höhle, Integration with respect to fuzzy measures, Proc. IFAC Symposium on Theory and Applications of Digital Control, New Delhi, January 1982, 35–37.

    Google Scholar 

  14. L. Lovâsz, Submodular function and convexity, in: A. Bachem, M. Grötschel, B. Korte (eds.), Mathematical programming. The state of the art. Bonn 1982, ( Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983 ) 235–257.

    Chapter  Google Scholar 

  15. J.-L. Marichal, Aggregation operators for multicriteria decision aid, Ph.D. thesis, Institute of Mathematics, University of Liège, Liège, Belgium, 1998.

    Google Scholar 

  16. J.-L. Marichal, Behavioral analysis of aggregation in multicriteria decision aid, in: J. Fodor, B. De Baets, and P. Perny (eds.), Preferences and Decisions under Incomplete Knowledge. Series: Studies in Fuzziness and Soft Computing Vol. 51 ( Physica Verlag, Heidelberg, 2000 ) 153–178.

    Google Scholar 

  17. J.-L. Marichal, The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making, Discrete Applied Mathematics 107 (2000) 139–164.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-L. Marichal, An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria, IEEE Transactions on Fuzzy Systems 8 (6) (2000) 800–807.

    Article  MathSciNet  Google Scholar 

  19. T. Murofushi, A technique for reading fuzzy measures (I): the Shapley value with respect to a fuzzy measure, 2nd Fuzzy Workshop,Nagaoka, Japan, October 1992, 39–48. In Japanese.

    Google Scholar 

  20. T. Murofushi and S. Soneda, Techniques for reading fuzzy measures (III): interaction index, 9th Fuzzy System Symposium,Sapporo, Japan, May 1993, 693–696. In Japanese.

    Google Scholar 

  21. T. Murofushi and M. Sugeno, An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems 29 (1989) 201–227.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Murofushi and M. Sugeno, A theory of fuzzy measures. Representation, the Choquet integral and null sets, Journal of Mathematical Analysis and Applications 159 (2) (1991) 532–549.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Murofushi and M. Sugeno, Some quantities represented by the Choquet integral, Fuzzy Sets and Systems 56 (1993) 229–235.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Owen, Multilinear extensions of games, Management Sciences 18 (1972) 64–79.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Zeitschrift fiir Wahrscheinlichkeitstheorie and Verwandte Gebiete 2 (1964) 340–368.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (1986) 255–261.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. S. Shapley, A value for n-person games, in: H. W. Kuhn and A. W. Tucker (eds.), Contributions to the Theory of Games, Vol. II, Annals of Mathematics Studies, 28, ( Princeton University Press, Princeton, NJ, 1953 ) 307–317.

    Google Scholar 

  28. I. Singer, Extensions of functions of 0–1 variables and applications to combinatorial optimization, Numerical Functional Analysis and Optimization 7 (1) (1984–85) 23–62.

    Google Scholar 

  29. M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, 1974.

    Google Scholar 

  30. R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. on Systems, Man and Cybernetics 18 (1988) 183–190.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Marichal, JL. (2002). Aggregation of Interacting Criteria by Means of the Discrete Choquet Integral. In: Calvo, T., Mayor, G., Mesiar, R. (eds) Aggregation Operators. Studies in Fuzziness and Soft Computing, vol 97. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1787-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1787-4_7

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00319-0

  • Online ISBN: 978-3-7908-1787-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics