Advertisement

Associative Aggregation Operators

  • W. Sander
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 97)

Abstract

An aggregation process occurs in many situations like in decision making or in statistical and economic measurement by aggregating expert’s opinions or by synthesizing judgements. So the typical situation is as follows:

Having n numerical values x 1,..., x n lying in an interval I of real numbers, the aggregation operator M defined on I n aggregates these numbers to a value of ℝ in an appropriate way so that the properties of M represent a model of the concrete situation.

Keywords

Regularity Condition Aggregation Operator Neutral Element Topological Semigroup Associative Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alsina, C., Frank, M.J., Schweizer, B. Associative functions on intervals. Bookmanuscript.Google Scholar
  2. [2]
    Calvo, T., De Baets, B. On a generalization of the absorption equation. Manuscript.Google Scholar
  3. [3]
    Calvo, T., De Baets, B., Fodor, J. The functional equation of Alsina and Frank for uninorms and nullnorms, Fuzzy Sets and Systems 120 (2001), 15–24.CrossRefGoogle Scholar
  4. [4]
    Czogala, E., Drewniak, J. Associative monotonic operations in fuzzy set theory. Fuzzy Seta and Systems 12 (1984), 249–269.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    De Baets, B. Idempotent uninorms. Europ. J. Oper. Research 118 (1999), 631–642.MATHCrossRefGoogle Scholar
  6. [6]
    Fodor, J.C. An extension of Fung-Fu’s theorem. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 4 (1996), 51–58.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Fodor, J., Calvo, T. Aggregation functions defined by t-norms and tconorms. In: Studies and Fuzziness, Ed. B. Bouchon-Meunier, PhysicaVerlag 1998, 36–48.Google Scholar
  8. [8]
    Fodor, J.C., Roubens, M. Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994).MATHGoogle Scholar
  9. [9]
    Fodor, J.C., Yager,R.R, Rybalov, A. Structure of uninorms. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411–427.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Fung, L.W., Fu, K.S. An axiomatic approach to rational decision making in a fuzzy environment. In Zadeh, L.A., Fu, K.S., Tanaka, S., Shimura, M., editors, Fuzzy Sets and Their Applications to Cognitive and Decision Processes (1975), 227–256, Academic Press, New York.Google Scholar
  11. [11]
    Grabisch, M., Nguyen, H., Walker, E.A. Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  12. [12]
    Hajek, P. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998).MATHCrossRefGoogle Scholar
  13. [13]
    Klement, E.P., Mesiar, R., Pap, E. Triangular Norms. Kluwer Academic Publishers, Dordrecht-Boston-London (2000).MATHGoogle Scholar
  14. [14]
    Klir, G.J., Yuan, B. Fuzzy Sets And Fuzzy Logic, Theory and Applications. Prentice Hall PTR, Upper Saddle River-New Jersey (1995).Google Scholar
  15. [15]
    Klement, E.P., Mesiar, R., Pap, E. on the relationship of associative compensatory operators to triangular norms and conorms. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 4 (1996), 129–144.MathSciNetMATHGoogle Scholar
  16. [16]
    Kolmogorov, A.N. Sur la notion de la moyenne. A.cad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930), 388–391.Google Scholar
  17. [17]
    Koch, R.J. Note on weak cutpoints in clans. Duke Math.J. 24 (1957), 611–615.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Kruse, R.L., Deely, J.J. Joint continuity of monotonic functions. Amer. Math. Soc. 76 (1969), 74–76.MathSciNetMATHGoogle Scholar
  19. [19]
    Li, Y-M., Shi,Z-K. Weak uniform aggregation operators Information Sciences 124 (2000), 317–323.MATHGoogle Scholar
  20. [20]
    Ling, C.M. Representations of associative functions. Publ. Math. Debrecen 12 (1965), 189–212.MathSciNetGoogle Scholar
  21. [21]
    Marichal, J.-L. Aggregation operators for multicriteria decision aid.PH.D. thesis, Institute of Mathematics, University of Liege, Belgium, 1999.Google Scholar
  22. [22]
    Mas, M., Mayor, G., Torrens, J. t-operators. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 7 (1999), 31–50.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Mostert P.S., Shields, A.L. On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65 (1957), 117–143.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Nagumo, M. Ober eine Klasse der Mittelwerte.Japan. J. of Math 6 (1930), 71–79.Google Scholar
  25. [25]
    Nelsen, R.B. An introduction to copulas. Volume 139 of Lecture Notes in Statistics (1999).Google Scholar
  26. [26]
    Paalman-De Miranda, A.B. Topological Semigroups. Volume 11 of Mathematical Centre Tracts. Matematisch Centrum, Amsterdam (1964).Google Scholar
  27. [27]
    Schweizer, B., Sklar, A. Probabilistic Metric Spaces. North-Holland, New York (1983).MATHGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2002

Authors and Affiliations

  • W. Sander
    • 1
  1. 1.Institute for AnalysisTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations