Advertisement

Aggregation Operators: Properties, Classes and Construction Methods

  • Tomasa Calvo
  • Anna Kolesárová
  • Magda Komorníková
  • Radko Mesiar
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 97)

Abstract

Aggregation (fusion) of several input values into a single output value is an indispensable tool not only of mathematics or physics, but of majority of engineering, economical, social and other sciences. The problems of aggregation are very broad and heterogeneous, in general. Therefore we restrict ourselves in this contribution to the specific topic of the aggregation of finite number of real inputs only. Closely related topics of aggregating infinitely many real inputs [23,109,64,52,43,42,44,99], of aggregating inputs from some ordinal scales [41,50], of aggregating complex inputs (such as probability distributions [107,114], fuzzy sets [143]), etc., are treated, among others, in the quoted papers, and we will not deal with them. In this spirit, if the number of input values is fixed, say n, an aggregation operator is a real function of n variables. This is still a too general topic. Therefore we restrict our considerations regarding inputs as well as outputs to some fixed interval (scale) I = [a, b] ⊑ [-∞, ∞]. It is a matter of rescaling to fix I = [0,1].

Keywords

Aggregation Operator Neutral Element Fuzzy Measure Triangular Norm Weighted Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. H. Abel: Untersuchungen der Funktionen zweier unabhängigen veränderlichen Grössen x und y wie f (x, y), welche die Eigenschaft haben, dass f (z, f (x, y)) eine symmetrische Funktion von x, y und z ist. J. Reine Angew. Math. 1 (1826) 1115.Google Scholar
  2. 2.
    J. Aczél: On mean values. Bulletin of the American Math. Society 54 (1948) 392–400.MATHCrossRefGoogle Scholar
  3. 3.
    J. Aczél: Lectures on Functional Equations and their Applications. Academic Press, New York, 1966.MATHGoogle Scholar
  4. 4.
    J. Aczél and C. Alsina: Characterization of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. Methods Oper. Res. 48 (1984) 3–22.MATHGoogle Scholar
  5. 5.
    P. Benvenuti and R. Mesiar: Integrals with respect to a general fuzzy measure. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 205–232.Google Scholar
  6. 6.
    P. Benvenuti and R. Mesiar Pseudo-arithmetical operations as a basis for integration with respect to a general fuzzy measure. Inform. Sc.,to appear.Google Scholar
  7. 7.
    B. Bouchon-Meunier, ed.: Aggregation and Fusion of Imperfect Information. Physica-Verlag, Heidelberg, 1998.MATHGoogle Scholar
  8. 8.
    T. Calvo, J. Martin, G. Mayor and J. Torrens: Balanced discrete fuzzy measures. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 665–676.MathSciNetMATHGoogle Scholar
  9. 9.
    T. Calvo and B. De Baets: On a generalization of the absorption equation. Int. Fuzzy. Math. Publ. 8 (2000) 141–149.MATHGoogle Scholar
  10. 10.
    T. Calvo, B. De Baets and J.C. Fodor: The functional equations of Alsina and Frank for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001) 15–24.CrossRefGoogle Scholar
  11. 11.
    T. Calvo and G. Mayor: Remarks on two types aggregation functions. Tatra Mount. Math. Publ. 16 (1999) 235–254.MathSciNetMATHGoogle Scholar
  12. 12.
    T. Calvo, G. Mayor, J. Torrens, J. Suíier, M. Mas and M. Carbonell: Generation of weighting triangles associated with aggregation functions. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 417–451.MATHGoogle Scholar
  13. 13.
    T. Calvo and R. Mesiar: Weighted means based on triangular conorms. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 9 (2001).Google Scholar
  14. 14.
    T. Calvo and R. Mesiar: Criteria importances in median-like aggregation. IEEE Transactions on Fuzzy Systems,to appear.Google Scholar
  15. 15.
    T. Calvo and R. Mesiar: Generalized medians. Fuzzy Sets and Systems, to appear.Google Scholar
  16. 16.
    T. Calvo and R. Mesiar: Continuous generated associative aggregation operators. Fuzzy Sets and Systems,to appear.Google Scholar
  17. 17.
    T. Calvo and R. Mesiar: Stability of aggregation operators Proceedings Eusflat’2001,Leicester, 2001, to appear.Google Scholar
  18. 18.
    F. Chiclana, F. Herrera and F. Herrera-Viedma: The ordered weighted geometric operator. Proceedings IPMU’2000, Madrid, 2000, pp. 985–991.Google Scholar
  19. 19.
    A.H. Clifford: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954) 631–646.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    G. Choquet: Theory of capacities. Ann. Inst. Fourier 5 (1953–54) 131–295.Google Scholar
  21. 21.
    A.C. Climescu: Sur l’équation fonctionelle de l’associativité. Bull. École Polytechn. Iassy 1 (1946) 1–16.Google Scholar
  22. 22.
    B. De Baets: Idempotent uninorms. Europ. J. Oper. Research 180 (1999) 631642.Google Scholar
  23. 23.
    D. Denneberg: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht, 1994.MATHGoogle Scholar
  24. 24.
    D. Denneberg: Non-additive measure and integral, basic concepts and their role for applications. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 42–69.Google Scholar
  25. 25.
    M. Detyniecki: Mathematical Aggregation Operators and their Applications to Video Querying. Ph.D. Thesis, University Paris V I, 2000.Google Scholar
  26. 26.
    J. Dombi: Basic concepts for a theory of evaluation: The aggregative operator. Europ. J. Oper. Research 10 (1982) 282–293.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985) 85–121.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    D. Dubois and H. Prade: Weighted minimum and maximum in fuzzy set theory. Inform. Sci. 39 (1986) 85–121.MathSciNetCrossRefGoogle Scholar
  29. 29.
    J.J. Dujmovic: Weighted conjunctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak., 1974, pp. 147–158.Google Scholar
  30. 30.
    J.C. Fodor: Contrapositive symmetry of fuzzy implications. Fuzzy Sets and Systems 69 (1995) 141–156.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    J.C. Fodor: An extension of Fung-Fu’s theorem. Int. J. of Uncertainty, Fuziness and Knowledge-Based Systems 4 (1996) 235–243.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    J.C. Fodor, J.-L. Marichal and M. Roubens: Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems 3 (1995) 236–240.CrossRefGoogle Scholar
  33. 33.
    J.C. Fodor and J.-L. Marichal: On nonstrict means. Aequationes Mathematicae 54 (1997) 308–327.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    J.C. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.MATHGoogle Scholar
  35. 35.
    J.C. Fodor, R.R. Yager and A. Rybalov: Structure of uninorms. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997) 411–427.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    M.J Frank. (1979) On the simultaneous associativity of F(x, y) and x + y -F(x, y). Aequationes Math. 19 (1979) 194–226.MATHCrossRefGoogle Scholar
  37. 37.
    K. Fujimoto, T. Murofushi and M. Sugeno: Canonical hierarchical decomposition of the Choquet integral over a finite set with respect to null-additive fuzzy measure. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1998) 345–363.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    K. Fujimoto and T. Murofushi: Hierarchical decomposition of the Choquet integral. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 94–103.Google Scholar
  39. 39.
    L.W. Fung and K.S. Fu: An axiomatic approach to rational decision making in a fuzzy environment. In: L.A. Zadeh, K.S. Fu, K. Tanaka and M. Shimura, eds., Fuzzy sets and Their Applications to Cognitive and Decision Processes. Academic Press, New York, 1975, pp. 227–256.Google Scholar
  40. 40.
    L. Godo and C. Sierra: A new approach to connective generation in the framework of expert systems using fuzzy logic. In: Proceedings 18th International Symposium on Multiple-Valued Logic. Palma de Mallorca, IEEE Computer Society Press, 1988, pp. 157–162.Google Scholar
  41. 41.
    L. Godo and V. Torra: Extending Choquet integrals for aggregation of ordinal values. Proceedings IPMU’2000, Madrid, 2000, pp. 410–417.Google Scholar
  42. 42.
    L. Gonzalez: A note on infinitary action of triangular norms and conorms. Fuzzy Sets and Systems 101 (1999) 177–180.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    L. Gonzalez: Universal aggregation operators. Proceedings Eusf lat’2001,Leicester, 2001, to appear.Google Scholar
  44. 44.
    L. Gonzalez: What is arithmetic mean? Proceedings A GGOP’2001,Oviedo, 2001, to appear.Google Scholar
  45. 45.
    S. Gottwald: A Treatise on Many-Valued Logic. Research Studies Press Ltd., Baldock, Hertforshire, 2001.Google Scholar
  46. 46.
    M. Grabisch: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems 69 (1995) 279–298.MathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Grabisch: k-order additive fuzzy measures. Proceedings IPMU’96, Granada, 1996, pp. 1345–1350.Google Scholar
  48. 48.
    M. Grabisch: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92 (1997) 167–189.MathSciNetCrossRefGoogle Scholar
  49. 49.
    M. Grabisch: The interaction and Möbius representation of fuzzy measures on finite spaces, k-additive measures. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. PhysicaVerlag, Heidelberg, 2000, pp. 70–93.Google Scholar
  50. 50.
    M. Grabisch: Symmetric and asymmetric integrals: the ordinal case. Proceedings IIZUKA’2000, Iizuka, 2000, CD-rom.Google Scholar
  51. 51.
    M. Grabisch, J.-L. Marichal and M. Roubens: Equivalent representations of set functions. Math. Operat. Res. 25 (2000) 157–178.MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    M. Grabisch, T. Murofushi, M. Sugeno, eds.: Fuzzy Measures and Integrals. Theory and Applications. Physica-Verlag, Heidelberg, 2000.MATHGoogle Scholar
  53. 53.
    M. Grabisch, H.T. Nguyen and E.A. Walker: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordercht, 1995.Google Scholar
  54. 54.
    P. Hajek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.MATHCrossRefGoogle Scholar
  55. 55.
    P.R. Halmos: Measure Theory. Van Nostrand, New York, 1950.Google Scholar
  56. 56.
    H. Imaoka: On a subjective evaluation model by a generalized fuzzy integral. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997) 517529.Google Scholar
  57. 57.
    H. Imaoka: Comparison between three integrals. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 273–286.Google Scholar
  58. 58.
    E.P. Klement: Construction of fuzzy v-algebras using triangular norms. J. Math. Anal. Appl. 85 (1982) pp. 543–566.MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    E.P. Klement, R. Mesiar and E. Pap: On the relationship of associative compensatory operators to triangular norms and conorms. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 4 (1996) 129–144.MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    E.P. Klement, R. Mesiar and E. Pap: Quasi-and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999) 3–13.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    E.P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
  62. 62.
    E.P. Klement, R. Mesiar and E. Pap: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 701–717.MathSciNetMATHGoogle Scholar
  63. 63.
    E.P. Klement, R. Mesiar and E. Pap: Geometric approach to aggregation. Proceedings Eusflat’2001 Leicester, 2001, to appear.Google Scholar
  64. 64.
    G.J. Klir and T.A. Folger: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, 1988.Google Scholar
  65. 65.
    A. Kolesârovâ: On the comparison of quasi-arithmetic means. Busefal 80 (1999) 30–34.Google Scholar
  66. 66.
    A. Kolesârovâ: Collapsed input-based aggregation. Int. J. of Uncertainty, Fuzziness and Knowledge- Based Systems 9 (2001).Google Scholar
  67. 67.
    A. Kolesârovâ: Limit properties of quasi-arithmetic means. Fuzzy Sets and Systems,to appear.Google Scholar
  68. 68.
    A. Kolesârovâ: Parametric evaluation of aggregation operators. Preprint, submitted.Google Scholar
  69. 69.
    A. Kolesârovâ and M. Komorníkovâ: Triangular norm-based iterative aggregation and compensatory operators. Fuzzy Sets and Systems 104 (1999) 109–120.MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    A. Kolesârovâ and J. Mordelovâ: 1-Lipschitz and kernel aggregation operators. Proceedings of AGGOP’2001,Oviedo, 2001, to appear.Google Scholar
  71. 71.
    A.N. Kolmogoroff: Sur la notion de la moyenne. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930) 388–391.MATHGoogle Scholar
  72. 72.
    M. Komorníkovâ: Generated aggregation operators. Proceedings EUSFLAT’99, Palma de Mallorca, 1999, pp. 355–358.Google Scholar
  73. 73.
    M. Komorníkovâ: Aggregation operators and additive generators. Int. J. of Uncertainty, Fuzziness and Knowledge- Based Systems 9 (2001).Google Scholar
  74. 74.
    J. Lâzaro and T. Rückschlossovâ: Shift invariant binary aggregation operators. Proceedings AGGOP’2001,Oviedo, 2001, to appear.Google Scholar
  75. 75.
    Y.-M. Li and Z.-K. Shi: Weak uninorms aggregation operators. Inform. Sci. 124 (2000) 317–323.MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    C.M. Ling: Representation of associative functions. Publ. Math. Debrecen 12 (1965) 189–212.MathSciNetGoogle Scholar
  77. 77.
    M.K. Luhandjula: Compensatory operators in fuzzy linear programming with multiple objectives. Fuzzy Sets and Systems 8 (1982) 245–252.MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    J.-L. Marichal: Aggregations Operators for Multi-Criteria Decision Aid. Ph.D. Thesis, University of Liége, 1998.Google Scholar
  79. 79.
    J.-L. Marichal: On Choquet and Sugeno integrals as aggregation functions. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 247–272.Google Scholar
  80. 80.
    J.-L. Marichal: An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems 8 (2000) 800–807.MathSciNetCrossRefGoogle Scholar
  81. 81.
    J.-L. Marichal: Aggregation of interacting criteria by means of the discrete Choquet integral. Chapter in this monograph.Google Scholar
  82. 82.
    J.-L. Marichal. On order invariant synthesizing functions. Preprint, submitted.Google Scholar
  83. 83.
    J.-L. Marichal: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequationes Mathematicae 59 (2000) 74–83.MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    J.-L. Marichal, P. Mathonet and E. Thousset: Characterization of some aggregations functions stable for positive linear transformations. Fuzzy Sets and Systems 102 (1999) 293–314.MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    M. Mas, G. Mayor and J. Torrens: t-operators. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7 (1999) 31–50MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    G. Mayor and T. Calvo: On extended aggregation functions. Proceedings IFSA ‘87, Prague, 1997, vol. I, pp. 281–285.Google Scholar
  87. 87.
    G. Mayor and J. Torrens: On a class of operators for expert systems. Int. J. of Intelligent Systems 8 (1988) 771–778.CrossRefGoogle Scholar
  88. 88.
    K. Menger: Statistical metrics. Procs. Nat. Acad. Sci. U.S.A. 37 (1942) 535537.Google Scholar
  89. 89.
    R. Mesiar: Compensatory operators based on triangular norms. Proceedings EUFIT’95, Aachen, 1995, pp. 131–135.Google Scholar
  90. 90.
    R. Mesiar: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995) 477–488.MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    R. Mesiar: Generalizations of k-order additive discrete fuzzy measures. Fuzzy Sets and Systems 102 (1999) 423–428.MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    R. Mesiar: k-order additive measures. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1999) 561–568.Google Scholar
  93. 93.
    R. Mesiar and B. De Baets: New construction methods for aggregation operators. Proceedings IPMU’2000, Madrid, 2000, pp. 701–706.Google Scholar
  94. 94.
    R. Mesiar, T. Calvo and J. Martin: Integral based aggregation of real data. Proceedings IPMU’2000, Madrid, 2000, pp. 58–62Google Scholar
  95. 95.
    R. Mesiar and B. De Baets: Continuous ordinal sums of aggregation operators. Manuscript in preparation.Google Scholar
  96. 96.
    R. Mesiar and M. Komorníkovâ: Aggregation operators. In: D. Herceg and K. Surla, eds., Proceedings PRIM’96, XI. Conference on Applied Mathematics, 1996, pp. 193–211.Google Scholar
  97. 97.
    R. Mesiar and M. Komorníkovâ: Triangular norm-based aggregation of evidence under fuzziness. In: B. Bouchon-Meunier, ed., Aggregation and Fusion of Imperfect Information. Physica-Verlag, Heidelberg, 1998.Google Scholar
  98. 98.
    R. Mesiar and D. Vivona: Two-step integral with respect to fuzzy measure. Tatra Mount. Math. Publ. 16 (1999) 359–368.MathSciNetMATHGoogle Scholar
  99. 99.
    R. Mesiar and H. Thiele: On T-quantifiers and S- quantifiers. In: V. Novak and I. Perfilieva, eds., Discovering the Word with Fuzzy Logic. Physica-Verlag, Heidelberg, 2000, pp. 310–326.Google Scholar
  100. 100.
    M. Mizumoto: Pictorial representations of fuzzy connectives, Part I.: Cases of t-norms, t-conorms and averaging operators. Fuzzy Sets and Systems 31 (1989) 217–242.MathSciNetCrossRefGoogle Scholar
  101. 101.
    M. Mizumoto: Pictorial representations of fuzzy connectives, Part II.: Cases of compensatory operators and self-dual operators. Fuzzy Sets and Systems 32 (1989) 45–79.MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    R. Moynihan. On TT semigroups of probability distribution functions II. Aequationes Math. 17 (1978) 19–40.MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    E. Muel and J. Mordelovâ: Kernel aggregation operators. Proceedings AGGOP’2001,Oviedo, 2001, to appear.Google Scholar
  104. 104.
    T. Murofushi and M. Sugeno: Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991) 51–57.MathSciNetCrossRefGoogle Scholar
  105. 105.
    T. Murofushi and M. Sugeno: Fuzzy measures and fuzzy integrals. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 3–41.Google Scholar
  106. 106.
    M. Nagumo: Uber eine Klasse der Mittelwerte. Japanese Journal of Mathematics 6 (1930) 71–79.Google Scholar
  107. 107.
    R.B. Nelsen: An Introduction to Copulas. Lecture Notes in Statistic 139, Springer, 1999.Google Scholar
  108. 108.
    S. Ovchinnikov and A. Dukhovny: Integral representation of invariant functionals J. Math. Anal. Appl. 244 (2000) 228–232.MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht, 1995.MATHGoogle Scholar
  110. 110.
    A.L. Ralescu and D.A. Ralescu: Extensions of fuzzy aggregation. Fuzzy Sets and Systems 86 (1997) 321–330.MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    T. Michâlikovâ-Rückschlossovâ: Some constructions of aggregation operators. J. Electrical Engin. 12 (2000) 29–32.Google Scholar
  112. 112.
    T. Rückschlossovâ: Invariant aggregation operators. Manuscript in preparation.Google Scholar
  113. 113.
    W. Sander: Associative aggregation operators. Chapter in this monograph.Google Scholar
  114. 114.
    B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North Holland, New York, 1983.MATHGoogle Scholar
  115. 115.
    C. Shannon and W. Weaver: The Mathematical Theory of Communication. University of Illinois Press, Urbana, 1949.MATHGoogle Scholar
  116. 116.
    N. Shilkret: Maxitive measures and integration. Indag. Math. 33 (1971) 109116.Google Scholar
  117. 117.
    W. Silvert: Symmetric summation: A class of operations of fuzzy sets. IEEE Trans. Syst., Man Cybern. 9 (1979) 657–659.MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    D. Smutnâ: On a peculiar t-norm. Busefal 75 (1998) 60–67.Google Scholar
  119. 119.
    M. Sugeno: Theory of Fuzzy Integrals and Applications. Ph.D. Thesis, Tokyo Inst. of Technology, Tokyo, 1974.Google Scholar
  120. 120.
    M. Sugeno and T. Murofushi: Pseudo-additive measures and integrals, J. Math. Anal. Appl. 122 (1987) 197–222.MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    M. Sabo, A. Kolesârovâ and S. Varga: RET operators generated by triangular norms and copulas. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 9 (2001).Google Scholar
  122. 122.
    J. Sipos: Integral with respect to a pre-measure. Math. Slovaca 29 (1979) 141–145.MathSciNetMATHGoogle Scholar
  123. 123.
    V. Torra: The weighted OWA operator. Int. J. of Intelligent Systems 12 (1997) 153–166.MATHCrossRefGoogle Scholar
  124. 124.
    V. Torra and L. Godo: Continuous WOWA operators with application to defuzzification. Chapter in this monograph.Google Scholar
  125. 125.
    I.B. Türksen: Interval-valued fuzzy sets and “compensatory AND”. Fuzzy Sets and Systems 51 (1992) 295–307.MathSciNetCrossRefGoogle Scholar
  126. 126.
    P. Vicenik: A note on generators of t-norms. Busefal 75 (1998) 33–38.Google Scholar
  127. 127.
    P. Vicenik- Additive generators and discontinuity. Busefal 76 (1998) 25–28.Google Scholar
  128. 128.
    P. Vicenik: Additive generators of non-continuous triangular norms. In: S. Rodabaugh and P. Klement, eds., Proceedings of Linz Seminar 1999,Kluwer Academic Publishers, to appear.Google Scholar
  129. 129.
    Z. Wang and G.J. Klir: Fuzzy Measure Theory, Plenum Press, 1992.Google Scholar
  130. 130.
    S. Weber: 1-decomposable measures and integrals for Archimedean tconorms I. J. Math. Anal. Appl. 101 (1984) 114–138.MathSciNetCrossRefGoogle Scholar
  131. 131.
    S. Weber: Two integrals and some modified version—critical remarks. Fuzzy Sets and Systems 20 (1986) 97–105.MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    R.R. Yager: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4 (1980) 235–242.MathSciNetCrossRefGoogle Scholar
  133. 133.
    R.R. Yager: On ordered weighted averaging aggregation operators in multi-criteria decisionmaking. IEEE Trans. Syst., Man Cybern. 18 (1988) 183–190.MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    R.R. Yager: Criteria importances in OWA aggregation: An application of fuzzy modeling. Proceedings IEEE’FUZZ’97, Barcelona, 1997, pp. 1677–1682.Google Scholar
  135. 135.
    R.R. Yager: Fusion od ordinal information using weighted median aggregation. Int. J. Approx. Reasoning 18 (1998) 35–52.CrossRefGoogle Scholar
  136. 136.
    R.R. Yager: Uninorms in fuzzy modeling. Fuzzy Sets and Systems to appear.Google Scholar
  137. 137.
    R.R. Yager: Using importances in group preference aggregation to block strategic manipulation. Chapter in this monograph.Google Scholar
  138. 138.
    R.R. Yager, M. Detyniecki and B. Bouchon—Meunier: Specifying t—norms based on the value of T(1/2,1/2). Mathware and Soft Computing 7 (2000) 77–78.MathSciNetMATHGoogle Scholar
  139. 139.
    R.R. Yager and D.P. Filev: Essentials of Fuzzy Modelling and Control. J. Wiley & Sons, New York, 1994.Google Scholar
  140. 140.
    R.R. Yager and J. Kacprzyk: The Ordered Weighted Averaging Operators, Theory and applications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1997.Google Scholar
  141. 141.
    R.R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996) 111–120.MathSciNetMATHCrossRefGoogle Scholar
  142. 142.
    R.R.Yager and A. Rybalov: Noncommutative self—identity aggregation. Fuzzy Sets and Systems 85 (1997) 73–82.MathSciNetCrossRefGoogle Scholar
  143. 143.
    L.A. Zadeh: Fuzzy sets. Inform. Control 8 (1965) 338–353.MATHCrossRefGoogle Scholar
  144. 144.
    H.J Zimmermann and P. Zysno: Latent connectives in human decision making Fuzzy Sets and Systems 4 (1980) 37–51.MATHCrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2002

Authors and Affiliations

  • Tomasa Calvo
    • 1
    • 2
  • Anna Kolesárová
    • 3
  • Magda Komorníková
    • 4
    • 5
  • Radko Mesiar
    • 4
    • 5
  1. 1.University of the Balearic IslandsPalma de MallorcaSpain
  2. 2.University of AlcaláAlcalá de Henares, MadridSpain
  3. 3.ChTF STUBratislavaSlovak Republic
  4. 4.SvF STUBratislavaSlovak Republic
  5. 5.ÚTIA AVČRPrague 8Czech Republic

Personalised recommendations