# Aggregation Operators: Properties, Classes and Construction Methods

• Tomasa Calvo
• Anna Kolesárová
• Magda Komorníková
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 97)

## Abstract

Aggregation (fusion) of several input values into a single output value is an indispensable tool not only of mathematics or physics, but of majority of engineering, economical, social and other sciences. The problems of aggregation are very broad and heterogeneous, in general. Therefore we restrict ourselves in this contribution to the specific topic of the aggregation of finite number of real inputs only. Closely related topics of aggregating infinitely many real inputs [23,109,64,52,43,42,44,99], of aggregating inputs from some ordinal scales [41,50], of aggregating complex inputs (such as probability distributions [107,114], fuzzy sets [143]), etc., are treated, among others, in the quoted papers, and we will not deal with them. In this spirit, if the number of input values is fixed, say n, an aggregation operator is a real function of n variables. This is still a too general topic. Therefore we restrict our considerations regarding inputs as well as outputs to some fixed interval (scale) I = [a, b] ⊑ [-∞, ∞]. It is a matter of rescaling to fix I = [0,1].

## Keywords

Aggregation Operator Neutral Element Fuzzy Measure Triangular Norm Weighted Arithmetic
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
N. H. Abel: Untersuchungen der Funktionen zweier unabhängigen veränderlichen Grössen x und y wie f (x, y), welche die Eigenschaft haben, dass f (z, f (x, y)) eine symmetrische Funktion von x, y und z ist. J. Reine Angew. Math. 1 (1826) 1115.Google Scholar
2. 2.
J. Aczél: On mean values. Bulletin of the American Math. Society 54 (1948) 392–400.
3. 3.
J. Aczél: Lectures on Functional Equations and their Applications. Academic Press, New York, 1966.
4. 4.
J. Aczél and C. Alsina: Characterization of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgements. Methods Oper. Res. 48 (1984) 3–22.
5. 5.
P. Benvenuti and R. Mesiar: Integrals with respect to a general fuzzy measure. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 205–232.Google Scholar
6. 6.
P. Benvenuti and R. Mesiar Pseudo-arithmetical operations as a basis for integration with respect to a general fuzzy measure. Inform. Sc.,to appear.Google Scholar
7. 7.
B. Bouchon-Meunier, ed.: Aggregation and Fusion of Imperfect Information. Physica-Verlag, Heidelberg, 1998.
8. 8.
T. Calvo, J. Martin, G. Mayor and J. Torrens: Balanced discrete fuzzy measures. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 665–676.
9. 9.
T. Calvo and B. De Baets: On a generalization of the absorption equation. Int. Fuzzy. Math. Publ. 8 (2000) 141–149.
10. 10.
T. Calvo, B. De Baets and J.C. Fodor: The functional equations of Alsina and Frank for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001) 15–24.
11. 11.
T. Calvo and G. Mayor: Remarks on two types aggregation functions. Tatra Mount. Math. Publ. 16 (1999) 235–254.
12. 12.
T. Calvo, G. Mayor, J. Torrens, J. Suíier, M. Mas and M. Carbonell: Generation of weighting triangles associated with aggregation functions. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 417–451.
13. 13.
T. Calvo and R. Mesiar: Weighted means based on triangular conorms. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 9 (2001).Google Scholar
14. 14.
T. Calvo and R. Mesiar: Criteria importances in median-like aggregation. IEEE Transactions on Fuzzy Systems,to appear.Google Scholar
15. 15.
T. Calvo and R. Mesiar: Generalized medians. Fuzzy Sets and Systems, to appear.Google Scholar
16. 16.
T. Calvo and R. Mesiar: Continuous generated associative aggregation operators. Fuzzy Sets and Systems,to appear.Google Scholar
17. 17.
T. Calvo and R. Mesiar: Stability of aggregation operators Proceedings Eusflat’2001,Leicester, 2001, to appear.Google Scholar
18. 18.
F. Chiclana, F. Herrera and F. Herrera-Viedma: The ordered weighted geometric operator. Proceedings IPMU’2000, Madrid, 2000, pp. 985–991.Google Scholar
19. 19.
A.H. Clifford: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954) 631–646.
20. 20.
G. Choquet: Theory of capacities. Ann. Inst. Fourier 5 (1953–54) 131–295.Google Scholar
21. 21.
A.C. Climescu: Sur l’équation fonctionelle de l’associativité. Bull. École Polytechn. Iassy 1 (1946) 1–16.Google Scholar
22. 22.
B. De Baets: Idempotent uninorms. Europ. J. Oper. Research 180 (1999) 631642.Google Scholar
23. 23.
24. 24.
D. Denneberg: Non-additive measure and integral, basic concepts and their role for applications. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 42–69.Google Scholar
25. 25.
M. Detyniecki: Mathematical Aggregation Operators and their Applications to Video Querying. Ph.D. Thesis, University Paris V I, 2000.Google Scholar
26. 26.
J. Dombi: Basic concepts for a theory of evaluation: The aggregative operator. Europ. J. Oper. Research 10 (1982) 282–293.
27. 27.
D. Dubois and H. Prade: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985) 85–121.
28. 28.
D. Dubois and H. Prade: Weighted minimum and maximum in fuzzy set theory. Inform. Sci. 39 (1986) 85–121.
29. 29.
J.J. Dujmovic: Weighted conjunctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak., 1974, pp. 147–158.Google Scholar
30. 30.
J.C. Fodor: Contrapositive symmetry of fuzzy implications. Fuzzy Sets and Systems 69 (1995) 141–156.
31. 31.
J.C. Fodor: An extension of Fung-Fu’s theorem. Int. J. of Uncertainty, Fuziness and Knowledge-Based Systems 4 (1996) 235–243.
32. 32.
J.C. Fodor, J.-L. Marichal and M. Roubens: Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems 3 (1995) 236–240.
33. 33.
J.C. Fodor and J.-L. Marichal: On nonstrict means. Aequationes Mathematicae 54 (1997) 308–327.
34. 34.
J.C. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.
35. 35.
J.C. Fodor, R.R. Yager and A. Rybalov: Structure of uninorms. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997) 411–427.
36. 36.
M.J Frank. (1979) On the simultaneous associativity of F(x, y) and x + y -F(x, y). Aequationes Math. 19 (1979) 194–226.
37. 37.
K. Fujimoto, T. Murofushi and M. Sugeno: Canonical hierarchical decomposition of the Choquet integral over a finite set with respect to null-additive fuzzy measure. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1998) 345–363.
38. 38.
K. Fujimoto and T. Murofushi: Hierarchical decomposition of the Choquet integral. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 94–103.Google Scholar
39. 39.
L.W. Fung and K.S. Fu: An axiomatic approach to rational decision making in a fuzzy environment. In: L.A. Zadeh, K.S. Fu, K. Tanaka and M. Shimura, eds., Fuzzy sets and Their Applications to Cognitive and Decision Processes. Academic Press, New York, 1975, pp. 227–256.Google Scholar
40. 40.
L. Godo and C. Sierra: A new approach to connective generation in the framework of expert systems using fuzzy logic. In: Proceedings 18th International Symposium on Multiple-Valued Logic. Palma de Mallorca, IEEE Computer Society Press, 1988, pp. 157–162.Google Scholar
41. 41.
L. Godo and V. Torra: Extending Choquet integrals for aggregation of ordinal values. Proceedings IPMU’2000, Madrid, 2000, pp. 410–417.Google Scholar
42. 42.
L. Gonzalez: A note on infinitary action of triangular norms and conorms. Fuzzy Sets and Systems 101 (1999) 177–180.
43. 43.
L. Gonzalez: Universal aggregation operators. Proceedings Eusf lat’2001,Leicester, 2001, to appear.Google Scholar
44. 44.
L. Gonzalez: What is arithmetic mean? Proceedings A GGOP’2001,Oviedo, 2001, to appear.Google Scholar
45. 45.
S. Gottwald: A Treatise on Many-Valued Logic. Research Studies Press Ltd., Baldock, Hertforshire, 2001.Google Scholar
46. 46.
M. Grabisch: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems 69 (1995) 279–298.
47. 47.
48. 48.
M. Grabisch: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92 (1997) 167–189.
49. 49.
M. Grabisch: The interaction and Möbius representation of fuzzy measures on finite spaces, k-additive measures. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. PhysicaVerlag, Heidelberg, 2000, pp. 70–93.Google Scholar
50. 50.
M. Grabisch: Symmetric and asymmetric integrals: the ordinal case. Proceedings IIZUKA’2000, Iizuka, 2000, CD-rom.Google Scholar
51. 51.
M. Grabisch, J.-L. Marichal and M. Roubens: Equivalent representations of set functions. Math. Operat. Res. 25 (2000) 157–178.
52. 52.
M. Grabisch, T. Murofushi, M. Sugeno, eds.: Fuzzy Measures and Integrals. Theory and Applications. Physica-Verlag, Heidelberg, 2000.
53. 53.
M. Grabisch, H.T. Nguyen and E.A. Walker: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordercht, 1995.Google Scholar
54. 54.
P. Hajek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.
55. 55.
P.R. Halmos: Measure Theory. Van Nostrand, New York, 1950.Google Scholar
56. 56.
H. Imaoka: On a subjective evaluation model by a generalized fuzzy integral. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997) 517529.Google Scholar
57. 57.
H. Imaoka: Comparison between three integrals. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 273–286.Google Scholar
58. 58.
E.P. Klement: Construction of fuzzy v-algebras using triangular norms. J. Math. Anal. Appl. 85 (1982) pp. 543–566.
59. 59.
E.P. Klement, R. Mesiar and E. Pap: On the relationship of associative compensatory operators to triangular norms and conorms. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 4 (1996) 129–144.
60. 60.
E.P. Klement, R. Mesiar and E. Pap: Quasi-and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999) 3–13.
61. 61.
E.P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
62. 62.
E.P. Klement, R. Mesiar and E. Pap: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 8 (2000) 701–717.
63. 63.
E.P. Klement, R. Mesiar and E. Pap: Geometric approach to aggregation. Proceedings Eusflat’2001 Leicester, 2001, to appear.Google Scholar
64. 64.
G.J. Klir and T.A. Folger: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, 1988.Google Scholar
65. 65.
A. Kolesârovâ: On the comparison of quasi-arithmetic means. Busefal 80 (1999) 30–34.Google Scholar
66. 66.
A. Kolesârovâ: Collapsed input-based aggregation. Int. J. of Uncertainty, Fuzziness and Knowledge- Based Systems 9 (2001).Google Scholar
67. 67.
A. Kolesârovâ: Limit properties of quasi-arithmetic means. Fuzzy Sets and Systems,to appear.Google Scholar
68. 68.
A. Kolesârovâ: Parametric evaluation of aggregation operators. Preprint, submitted.Google Scholar
69. 69.
A. Kolesârovâ and M. Komorníkovâ: Triangular norm-based iterative aggregation and compensatory operators. Fuzzy Sets and Systems 104 (1999) 109–120.
70. 70.
A. Kolesârovâ and J. Mordelovâ: 1-Lipschitz and kernel aggregation operators. Proceedings of AGGOP’2001,Oviedo, 2001, to appear.Google Scholar
71. 71.
A.N. Kolmogoroff: Sur la notion de la moyenne. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930) 388–391.
72. 72.
M. Komorníkovâ: Generated aggregation operators. Proceedings EUSFLAT’99, Palma de Mallorca, 1999, pp. 355–358.Google Scholar
73. 73.
M. Komorníkovâ: Aggregation operators and additive generators. Int. J. of Uncertainty, Fuzziness and Knowledge- Based Systems 9 (2001).Google Scholar
74. 74.
J. Lâzaro and T. Rückschlossovâ: Shift invariant binary aggregation operators. Proceedings AGGOP’2001,Oviedo, 2001, to appear.Google Scholar
75. 75.
Y.-M. Li and Z.-K. Shi: Weak uninorms aggregation operators. Inform. Sci. 124 (2000) 317–323.
76. 76.
C.M. Ling: Representation of associative functions. Publ. Math. Debrecen 12 (1965) 189–212.
77. 77.
M.K. Luhandjula: Compensatory operators in fuzzy linear programming with multiple objectives. Fuzzy Sets and Systems 8 (1982) 245–252.
78. 78.
J.-L. Marichal: Aggregations Operators for Multi-Criteria Decision Aid. Ph.D. Thesis, University of Liége, 1998.Google Scholar
79. 79.
J.-L. Marichal: On Choquet and Sugeno integrals as aggregation functions. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 247–272.Google Scholar
80. 80.
J.-L. Marichal: An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Transactions on Fuzzy Systems 8 (2000) 800–807.
81. 81.
J.-L. Marichal: Aggregation of interacting criteria by means of the discrete Choquet integral. Chapter in this monograph.Google Scholar
82. 82.
J.-L. Marichal. On order invariant synthesizing functions. Preprint, submitted.Google Scholar
83. 83.
J.-L. Marichal: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequationes Mathematicae 59 (2000) 74–83.
84. 84.
J.-L. Marichal, P. Mathonet and E. Thousset: Characterization of some aggregations functions stable for positive linear transformations. Fuzzy Sets and Systems 102 (1999) 293–314.
85. 85.
M. Mas, G. Mayor and J. Torrens: t-operators. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 7 (1999) 31–50
86. 86.
G. Mayor and T. Calvo: On extended aggregation functions. Proceedings IFSA ‘87, Prague, 1997, vol. I, pp. 281–285.Google Scholar
87. 87.
G. Mayor and J. Torrens: On a class of operators for expert systems. Int. J. of Intelligent Systems 8 (1988) 771–778.
88. 88.
K. Menger: Statistical metrics. Procs. Nat. Acad. Sci. U.S.A. 37 (1942) 535537.Google Scholar
89. 89.
R. Mesiar: Compensatory operators based on triangular norms. Proceedings EUFIT’95, Aachen, 1995, pp. 131–135.Google Scholar
90. 90.
R. Mesiar: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995) 477–488.
91. 91.
R. Mesiar: Generalizations of k-order additive discrete fuzzy measures. Fuzzy Sets and Systems 102 (1999) 423–428.
92. 92.
R. Mesiar: k-order additive measures. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1999) 561–568.Google Scholar
93. 93.
R. Mesiar and B. De Baets: New construction methods for aggregation operators. Proceedings IPMU’2000, Madrid, 2000, pp. 701–706.Google Scholar
94. 94.
R. Mesiar, T. Calvo and J. Martin: Integral based aggregation of real data. Proceedings IPMU’2000, Madrid, 2000, pp. 58–62Google Scholar
95. 95.
R. Mesiar and B. De Baets: Continuous ordinal sums of aggregation operators. Manuscript in preparation.Google Scholar
96. 96.
R. Mesiar and M. Komorníkovâ: Aggregation operators. In: D. Herceg and K. Surla, eds., Proceedings PRIM’96, XI. Conference on Applied Mathematics, 1996, pp. 193–211.Google Scholar
97. 97.
R. Mesiar and M. Komorníkovâ: Triangular norm-based aggregation of evidence under fuzziness. In: B. Bouchon-Meunier, ed., Aggregation and Fusion of Imperfect Information. Physica-Verlag, Heidelberg, 1998.Google Scholar
98. 98.
R. Mesiar and D. Vivona: Two-step integral with respect to fuzzy measure. Tatra Mount. Math. Publ. 16 (1999) 359–368.
99. 99.
R. Mesiar and H. Thiele: On T-quantifiers and S- quantifiers. In: V. Novak and I. Perfilieva, eds., Discovering the Word with Fuzzy Logic. Physica-Verlag, Heidelberg, 2000, pp. 310–326.Google Scholar
100. 100.
M. Mizumoto: Pictorial representations of fuzzy connectives, Part I.: Cases of t-norms, t-conorms and averaging operators. Fuzzy Sets and Systems 31 (1989) 217–242.
101. 101.
M. Mizumoto: Pictorial representations of fuzzy connectives, Part II.: Cases of compensatory operators and self-dual operators. Fuzzy Sets and Systems 32 (1989) 45–79.
102. 102.
R. Moynihan. On TT semigroups of probability distribution functions II. Aequationes Math. 17 (1978) 19–40.
103. 103.
E. Muel and J. Mordelovâ: Kernel aggregation operators. Proceedings AGGOP’2001,Oviedo, 2001, to appear.Google Scholar
104. 104.
T. Murofushi and M. Sugeno: Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991) 51–57.
105. 105.
T. Murofushi and M. Sugeno: Fuzzy measures and fuzzy integrals. In: M. Grabisch, T. Murofushi and M. Sugeno, eds. Fuzzy Measures and Integrals. Theory and Applications. Physica- Verlag, Heidelberg, 2000, pp. 3–41.Google Scholar
106. 106.
M. Nagumo: Uber eine Klasse der Mittelwerte. Japanese Journal of Mathematics 6 (1930) 71–79.Google Scholar
107. 107.
R.B. Nelsen: An Introduction to Copulas. Lecture Notes in Statistic 139, Springer, 1999.Google Scholar
108. 108.
S. Ovchinnikov and A. Dukhovny: Integral representation of invariant functionals J. Math. Anal. Appl. 244 (2000) 228–232.
109. 109.
110. 110.
A.L. Ralescu and D.A. Ralescu: Extensions of fuzzy aggregation. Fuzzy Sets and Systems 86 (1997) 321–330.
111. 111.
T. Michâlikovâ-Rückschlossovâ: Some constructions of aggregation operators. J. Electrical Engin. 12 (2000) 29–32.Google Scholar
112. 112.
T. Rückschlossovâ: Invariant aggregation operators. Manuscript in preparation.Google Scholar
113. 113.
W. Sander: Associative aggregation operators. Chapter in this monograph.Google Scholar
114. 114.
B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North Holland, New York, 1983.
115. 115.
C. Shannon and W. Weaver: The Mathematical Theory of Communication. University of Illinois Press, Urbana, 1949.
116. 116.
N. Shilkret: Maxitive measures and integration. Indag. Math. 33 (1971) 109116.Google Scholar
117. 117.
W. Silvert: Symmetric summation: A class of operations of fuzzy sets. IEEE Trans. Syst., Man Cybern. 9 (1979) 657–659.
118. 118.
D. Smutnâ: On a peculiar t-norm. Busefal 75 (1998) 60–67.Google Scholar
119. 119.
M. Sugeno: Theory of Fuzzy Integrals and Applications. Ph.D. Thesis, Tokyo Inst. of Technology, Tokyo, 1974.Google Scholar
120. 120.
M. Sugeno and T. Murofushi: Pseudo-additive measures and integrals, J. Math. Anal. Appl. 122 (1987) 197–222.
121. 121.
M. Sabo, A. Kolesârovâ and S. Varga: RET operators generated by triangular norms and copulas. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 9 (2001).Google Scholar
122. 122.
J. Sipos: Integral with respect to a pre-measure. Math. Slovaca 29 (1979) 141–145.
123. 123.
V. Torra: The weighted OWA operator. Int. J. of Intelligent Systems 12 (1997) 153–166.
124. 124.
V. Torra and L. Godo: Continuous WOWA operators with application to defuzzification. Chapter in this monograph.Google Scholar
125. 125.
I.B. Türksen: Interval-valued fuzzy sets and “compensatory AND”. Fuzzy Sets and Systems 51 (1992) 295–307.
126. 126.
P. Vicenik: A note on generators of t-norms. Busefal 75 (1998) 33–38.Google Scholar
127. 127.
128. 128.
P. Vicenik: Additive generators of non-continuous triangular norms. In: S. Rodabaugh and P. Klement, eds., Proceedings of Linz Seminar 1999,Kluwer Academic Publishers, to appear.Google Scholar
129. 129.
Z. Wang and G.J. Klir: Fuzzy Measure Theory, Plenum Press, 1992.Google Scholar
130. 130.
S. Weber: 1-decomposable measures and integrals for Archimedean tconorms I. J. Math. Anal. Appl. 101 (1984) 114–138.
131. 131.
S. Weber: Two integrals and some modified version—critical remarks. Fuzzy Sets and Systems 20 (1986) 97–105.
132. 132.
R.R. Yager: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4 (1980) 235–242.
133. 133.
R.R. Yager: On ordered weighted averaging aggregation operators in multi-criteria decisionmaking. IEEE Trans. Syst., Man Cybern. 18 (1988) 183–190.
134. 134.
R.R. Yager: Criteria importances in OWA aggregation: An application of fuzzy modeling. Proceedings IEEE’FUZZ’97, Barcelona, 1997, pp. 1677–1682.Google Scholar
135. 135.
R.R. Yager: Fusion od ordinal information using weighted median aggregation. Int. J. Approx. Reasoning 18 (1998) 35–52.
136. 136.
R.R. Yager: Uninorms in fuzzy modeling. Fuzzy Sets and Systems to appear.Google Scholar
137. 137.
R.R. Yager: Using importances in group preference aggregation to block strategic manipulation. Chapter in this monograph.Google Scholar
138. 138.
R.R. Yager, M. Detyniecki and B. Bouchon—Meunier: Specifying t—norms based on the value of T(1/2,1/2). Mathware and Soft Computing 7 (2000) 77–78.
139. 139.
R.R. Yager and D.P. Filev: Essentials of Fuzzy Modelling and Control. J. Wiley & Sons, New York, 1994.Google Scholar
140. 140.
R.R. Yager and J. Kacprzyk: The Ordered Weighted Averaging Operators, Theory and applications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1997.Google Scholar
141. 141.
R.R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996) 111–120.
142. 142.
R.R.Yager and A. Rybalov: Noncommutative self—identity aggregation. Fuzzy Sets and Systems 85 (1997) 73–82.
143. 143.
L.A. Zadeh: Fuzzy sets. Inform. Control 8 (1965) 338–353.
144. 144.
H.J Zimmermann and P. Zysno: Latent connectives in human decision making Fuzzy Sets and Systems 4 (1980) 37–51.

## Authors and Affiliations

• Tomasa Calvo
• 1
• 2
• Anna Kolesárová
• 3
• Magda Komorníková
• 4
• 5