Genetic Algorithm Learning and Economic Evolution

  • Thomas Riechmann
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 100)


This paper tries to connect the theory of genetic algorithm (GA) learning to evolutionary game theory. It is shown that economic learning via genetic algorithms can be described as a specific form of evolutionary game. It will be pointed out that GA learning results in a series of near Nash equilibria which during the learning process build up to finally reach a neighborhood of an evolutionarily stable state. In order to clarify this point, a concept of evolutionary stability of genetic populations will be developed. Thus, in a second part of the paper, it becomes possible to explain both, the reasons for the specific dynamics of standard GA learning models and the different kind of dynamics of GA learning models which use extensions to the standard GA.


Genetic Algorithm Nash Equilibrium Genetic Population Economic Agent Evolutionary Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alchian A. A. (1950) Uncertainty, Evolution, and Economic Theory. Journal of Political Economy 58, 211–221CrossRefGoogle Scholar
  2. 2.
    Andreoni J., Miller J. H. (1995) Auctions with Artificial Adaptive Agents. Games and Economic Behavior 10, 39–64MATHCrossRefGoogle Scholar
  3. 3.
    Arifovic J. (1994) Genetic Algorithm Learning and the Cobweb-model. Journal of Economic Dynamics and Control 18, 3–28MATHCrossRefGoogle Scholar
  4. 4.
    Arifovic J. (1995) Genetic Algorithms and Inflationary Economies. Journal of Monetary Economies 36, 219–243CrossRefGoogle Scholar
  5. 5.
    Arifovic J. (1996) The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies. Journal of Political Economy 104, 510–541CrossRefGoogle Scholar
  6. 6.
    Axelrod R. (1987) The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In: Davis L. (Ed.) Genetic Algorithms and Simulated Annealing. Pitman, London, 32–41Google Scholar
  7. 7.
    Thomas Back. (1992) The Interaction of Mutation Rate, Selection, and Self-Adaption within a Genetic Algorithm. In: Männer R., Manderick B. (Eds.) Parallel Problem Solving from Nature 2. Elsevier Science, AmsterdamGoogle Scholar
  8. 8.
    Back T. (1992) Self-Adaption in Genetic Algorithms. In: Proceedings of the First European Conference on Artificial Life. Cambridge, MA, London, MIT PressGoogle Scholar
  9. 9.
    Back T., Hoffmeister F.,Schwefel Hans-Paul (1991) A Survey of Evolution Strategies. In: Belew R. K., Booker L. B. (Eds.) Proceedings of the 4th International Conference on Genetic Algorithms, San Mateo, California, 13–16. Juli 1991. Morgan Kaufmann, 2–9Google Scholar
  10. 10.
    Back T., Schütz M. (1996) Intelligent Mutation Rate Control in Canonical Genetic Algorithms. In: Ras W., Michalewicz M. (Eds.) Foundation of Intelligent Systems 9th International Symposium, ISMIS 96, Berlin, Heidelberg, New York, Springer, 158–167CrossRefGoogle Scholar
  11. 11.
    Birchenhall C. (1995) Modular Technical Change and Genetic Algorithms. Computational Economies 8, 233–253MATHCrossRefGoogle Scholar
  12. 12.
    Bullard J., Duffy J. (1998) A Model of Learning and Emulation with Artificial Adaptive Agents. Journal of Economic Dynamics and Control 22, 179–207MathSciNetCrossRefGoogle Scholar
  13. 13.
    Davis T. E., Principe J. C. (1993) A Markov Chain Framework for the Simple Genetic Algorithm. Evolutionary Computation 1, 269–288CrossRefGoogle Scholar
  14. 14.
    Dawid H. (1994) A Markov Chain Analysis of Genetic Algorithms with a State Dependent Fitness Function. Complex Systems 8, 407–417MathSciNetMATHGoogle Scholar
  15. 15.
    Dawid H. (1996) Adaptive Learning by Genetic Algorithms. Springer, Berlin, Heidelberg, New YorkMATHCrossRefGoogle Scholar
  16. 16.
    Franke R. (1997) Behavioural Heterogeneity and Genetic Algorithm Learning in the Cobweb Model. Discussion Paper 9, IKSF—Fachbereich 7—Wirtschaftswissenschaft. Universität BremenGoogle Scholar
  17. 17.
    Friedman D. On Economic Applications of Evolutionary Game Theory. Journal of Evolutionary Economics 8, 15–43Google Scholar
  18. 18.
    Goldberg D. E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MassachusettsMATHGoogle Scholar
  19. 19.
    Goldberg D. E., Deb K. (1991) A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Foundations of Genetic Algorithms. San Matoe, California, Morgan Kaufmann, 69–93Google Scholar
  20. 20.
    Hayek F. A. von (1969) Freiburger Studien, chapter 15, Der Wettbewerb als Entdeckungsverfahren, 249–265, J. C. B. Mohr (Paul Siebeck), TübingenGoogle Scholar
  21. 21.
    Hayek F. A. von (1978) New Studies in Philosophy, Politics, Economics and the History of Ideas. Chapter 12, Competition as a Discovery Process. Routledge & Kegan Paul, London, 179–190CrossRefGoogle Scholar
  22. 22.
    Hofbauer J., Sigmund K. (1988) The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge, UKMATHGoogle Scholar
  23. 23.
    Hofbauer J., Sigmund K. (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UKMATHCrossRefGoogle Scholar
  24. 24.
    Mailath G. J. (1992) Introduction: Symposium on Evolutionary Game Theory. Journal of Economic Theory 57, 259–277MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Marimon R. (1993) Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. European Economic Review 37, 603–611CrossRefGoogle Scholar
  26. 26.
    Marks R. E. (1992) Breeding Hybrid Strategies: Optimal Behaviour for Oligopolists. Journal of Evolutionary Economics 2, 17–38CrossRefGoogle Scholar
  27. 27.
    Mitchell M. (1996) An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, LondonGoogle Scholar
  28. 28.
    Nelson R. R., Winter S. G. (1982) An Evolutionary Theory of Economic Change. MIT Press, Cambridge, MA, LondonGoogle Scholar
  29. 29.
    Riechmann T. (1998) Learning How to Learn. Towards an Improved Mutation Operator within GA Learning Models. In: Computation in Economics, Finance and Engeneering: Economic Systems. Cambridge, England, 1998. Society for Computational EconomicsGoogle Scholar
  30. 30.
    Riechmann T. (1999) Learning and Behavioral Stability — An Economic Interpretation of Genetic Algorithms. Journal of Evolutionary Economics 9, 225–242CrossRefGoogle Scholar
  31. 31.
    Rudolph G. (1994) Convergence Analysis of Canonical Genetic Algorithms. IEEE Transactions on Neural Networks 5, 96–101CrossRefGoogle Scholar
  32. 32.
    Samuelson L. (1997) Evolutionary Games and Equilibrium Selection. MIT Press Series on Economic Learning and Social Evolution. MIT Press, Cambridge, MA, LondonMATHGoogle Scholar
  33. 33.
    Smith J. M. (1982) Evolution and the Theory of Games. Cambridge University Press, Cambridge, UKMATHCrossRefGoogle Scholar
  34. 34.
    Weibull J. (1995) Evolutionary Game Theory. MIT Press, Cambridge, MA, LondonMATHGoogle Scholar
  35. 35.
    Witt U. (1985) Coordination of Individual Economic Activities as an Evolving Process of Self-organization. Economic Appliquee, XXXVII, 569–595Google Scholar
  36. 36.
    Witt U. (1993) Introduction. In: Witt U. (Ed.) Evolutionary Economics. Edward Elgar, Aldershot, England, xiii–xxviiGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Thomas Riechmann
    • 1
  1. 1.Institut für VolkswirtschaftslehreUniversität HannoverHannoverGermany

Personalised recommendations