Advertisement

Evolutionary Computation in Economics and Finance: A Bibliography

  • Shu-Heng Chen
  • Tzu-Wen Kuo
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 100)

Abstract

This chapter presents a bibliography on the application of evolutionary computation to economics and finance. Publications included in this bibliography are classified by application domain, published journal or conference proceedings. Information on some useful websites and software is also provided.

Keywords

Genetic Algorithm Genetic Program Option Price Evolutionary Computation Economic Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agapie A., Agapie A. (1996) Parameter Estimation in Time Series Forecasting Using Genetic Algorithms. In: Proceedings of the Fourth European Congress on Intelligent Techniques and Soft Computing, 2155–2158Google Scholar
  2. 2.
    Agapie A., Agapie A. (1997) Forecasting the Economic Cycles Based on an Extension of the Holt-Winters Model: A Genetic Algorithms Approach. In: Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering. IEEE Press, 96–99CrossRefGoogle Scholar
  3. 3.
    Alemdar N. M., Ozyildirim S. (1998) A Genetic Game of Trade, Growth and Externalities. Journal of Economic Dynamics and Control 22(6),811–832MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Allen F., Karjalainen R. (1999) Using Genetic Algorithms to Find Technical Trading Rules. Journal of Financial Economics 51(2),245–271CrossRefGoogle Scholar
  5. 5.
    Andreoni J., Miller J. H. (1995) Auctions with Artificial Adaptive Agents. Games and Economic Behavior 10,39–64MATHCrossRefGoogle Scholar
  6. 6.
    Andrew M., Prager R. (1994) Genetic Programming for the Acquisition of Double Auction Market strategies. In: Kinnear K. Jr. (Ed.), Advances in Genetic Programming. MIT Press, Cambridge, MA, 355–368Google Scholar
  7. 7.
    Angeline P. J. (1994) An Alternate Interpretation of the Iterated Prisoner’s Dilemma and the Evolution of Nonmutual Cooperation. In: Brooks R., Maes P. (Eds.), Artificial Life IV. MIT Press, Cambridge, MA, 353–358Google Scholar
  8. 8.
    Arifovic J. (1991) Learning by Genetic Algorithms in Economic Environments. Ph.D. thesis, University of Chicago.Google Scholar
  9. 9.
    Arifovic J. (1994) Genetic Algorithms Learning and the Cobweb Model. Journal of Economic Dynamics and Control 18(1),3–28MATHCrossRefGoogle Scholar
  10. 10.
    Arifovic J. (1995) Genetic Algorithms and Inflationary Economies. Journal of Monetary Economics 36(1),219–243CrossRefGoogle Scholar
  11. 11.
    Arifovic J. (1996) The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies. Journal of Political Economy 104(3),510–541CrossRefGoogle Scholar
  12. 12.
    Arifovic J. (1997) Strategic Uncertainty and the Genetic Algorithm Adaptation. In: Amman H., Rustern B., Whinston A. (Eds.), Computational Approaches to Economic Problems. Kluwer Academic Publishers, Dordrecht, 225–236CrossRefGoogle Scholar
  13. 13.
    Arifovic J. (1998) Stability of Equilibria Under Genetic-Algorithm Adaptation: An Analysis. Macroeconomic Dynamics 2(1), 1–21MATHGoogle Scholar
  14. 14.
    Arifovic J. (2001) Evolutionary Dynamics of Currency substitution. Journal of Economic Dynamics and Control 25,395–417MATHCrossRefGoogle Scholar
  15. 15.
    Arifovic J., Eaton B. C. (1995) Coordination via Genetic Learning. Computational Economics 8(3), 181–203MATHCrossRefGoogle Scholar
  16. 16.
    Arifovic J., Bullard J., Duffy J. (1997) The Transition from Stagnation to Growth: An Adaptive Learning Approach. Journal of Economic Growth 2(2), 185–209MATHCrossRefGoogle Scholar
  17. 17.
    Arifovic J., Eaton B. C, Morrison W. G. (1996) Drift and Selective Imitation. In: Angeline P., Back T., Fogel D. (Eds.), Evolutionary Programming: Proceeding of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, 37–44Google Scholar
  18. 18.
    Arifovic J., Eaton B. C. (1998) The Evolution of Type Communication in a Sender/Receiver Game of Common Interest with Cheap Talk. Journal of Economic Dynamics and Control 22(8–9), 1187–1207MATHCrossRefGoogle Scholar
  19. 19.
    Arifovic J., Gencay R. (2000) Statistical Properties of Genetic Learning in a Model of Exchange Rate. Journal of Economic Dynamics and Control 24,981–1005MATHCrossRefGoogle Scholar
  20. 20.
    Arthur W. B. (1992) On Learning and Adaptation in the Economy. SFI Working Paper, 92–07–038.Google Scholar
  21. 21.
    Arthur W. B. (1994) Inductive Reasoning and Bounded Rationality. American Economic Association Papers Proceedings 84, 406–411Google Scholar
  22. 22.
    Arthur W. B., Holland J., LeBaron B., Palmer R., Tayler P. (1997) Asset Pricing under Endogenous Expectations in an Artificial Stock Market. In: Arthur W. B., Durlauf S., Lane D. (Eds.), The Economy as an Evolving Complex System II. Addison-Wesley, Reading, MA, 15–44Google Scholar
  23. 23.
    Ashiock D., Smucker M. D., Stanley E. A., Tesfatsion L. (1996) Preferential Partner Selection in an Evolutionary Study of Prisoner’s Dilemma. BioSystems 37(1–2), 99–125CrossRefGoogle Scholar
  24. 24.
    Axelrod R. (1984) The Evolution of Cooperation. Basic Books, NY.Google Scholar
  25. 25.
    Axelrod R. (1987) The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In: Davis L. (Ed.), Genetic Algorithms and Simulated Annealing. Pitman, London, 32–41Google Scholar
  26. 26.
    Baglioni S., Sorbello D., Pereira C. da Costa, Tettamanzi A. G. B. (2000) Evolutionary Multiperiod Asset Allocation. In: Whitley D., Goldberg D., Cantû-Paz E., Spector L., Parmee I., Beyer H.-G. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 597–604Google Scholar
  27. 27.
    Bagnall A. J. (2000) A Multi-Adaptive Agent Model of Generator Bidding in the UK Market in Electricity. In: Whitley D., Goldberg D., Cantû-Paz E., Spector L., Parmee I., Beyer H.-G. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 605–612Google Scholar
  28. 28.
    Bagnall A. J., Smith G. D. (1999) Using an Adaptive Design to Bid in a Simplified Model of the UK Market in Electricity. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1. Morgan Kaufmann, 774Google Scholar
  29. 29.
    Baldassarre G. (1997) Neural Networks and Genetic Algorithms for the Simulation Models of Bounded Rationality Theory. An Application to Oligopolistic Markets. Rivista di Politica Economica 87(12),107–145Google Scholar
  30. 30.
    Ball J. F., Dorsey R. E., Johnson J. D. (1997) Non-Linear Optimization on a Parallel Intel i860 RISC Based Architecture. Computational Economics 10(3),279–294MATHCrossRefGoogle Scholar
  31. 31.
    Bao P., Chan H. (1998) Vector Quantization and Genetic Algorithm-Based Portfolio Theory Modeling. In: Xu L., Chan L. W., King L, Fu A. (Eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining. Springer-Verlag, Singapore, 149–156Google Scholar
  32. 32.
    Barrow D. (1992) Making Money with Genetic Algorithms. In: Proceedings of the Fifth European Seminar on Neural Networks and Genetic Algorithms. IBC International Service, London.Google Scholar
  33. 33.
    Bascl E. (1999) Learning by Imitation. Journal of Economic Dynamics and Control 23,1569–1585CrossRefGoogle Scholar
  34. 34.
    Basu N., Pryor R. J. (1997) Growing a Market Economy. Sandia Report SAND-97–2093.CrossRefGoogle Scholar
  35. 35.
    Basu N., Pryor R. J., Quint T. (1998) ASPEN: A Microsimulation Model of the Economy. Computational Economics 12(3), 223–241MATHCrossRefGoogle Scholar
  36. 36.
    Bauer R. J. Jr., Liepins G. E. (1992) Genetic Algorithms and Computerized Trading Strategies. In: O’leary D. E., Watkins R. R. (Eds.), Expert Systems in Finance. North Holland.CrossRefGoogle Scholar
  37. 37.
    Bauer R. J. Jr. (1994a) Genetic Algorithms and Investment Strategies. John Wiley & Sons, New York.Google Scholar
  38. 38.
    Bauer R. J. Jr. (1994b) An Introduction to Genetic Algorithms: a Mutual Fund Screening Example. Neurove$t Journal 2(4), 16–19Google Scholar
  39. 39.
    Bauer R. J. Jr. (1995) Genetic Algorithms and the Management of Exchange Rate Risk. In: Biethahn J., Nissen V. (Eds.), Evolutionary Algorithms in Management Applications. Springer, Heidelberg and New York, 253–263CrossRefGoogle Scholar
  40. 40.
    Bearse P. M., Bozdogan H., Schlottmann A. M. (1997) Empirical Econometric Modelling of Food Consumption Using a New Informational Complexity Approach. Journal of Applied Econometrics 12(5),563–586CrossRefGoogle Scholar
  41. 41.
    Beaufils B., Delahaye J.-R, Mathieu P. (1996) Our Meeting with Gradual: a Good Strategy for the Iterated Prisoner’s Dilemma. Proceedings of the Fifth International Conference on Artificial Life, 159–166Google Scholar
  42. 42.
    Beaufils B., Delahaye J.-P., Mathieu P. (1998) Complete Classes of Strategies for the Classical Iterated Prisoner’s Dilemma. In: Porto V. W., Saravanan N., Waagen D., Eiben A. E. (Eds.), Evolutionary Programming VII, Lecture Notes in Computer Science, Vol. 1447. Springer-Verlag, Berlin, 33–42CrossRefGoogle Scholar
  43. 43.
    Beaumont P. M., Bradshaw P. T. (1995) A Distributed Parallel Genetic Algorithm for Solving Optimal Growth Models. Computational Economics 8(3), 159–179MATHCrossRefGoogle Scholar
  44. 44.
    Beckenbach F. (1999) Learning by Genetic Algorithms in Economics. In: Brenner T. (Ed.), Computational Techniques for Modelling Learning in Economics, The Series Advances in Computational Economics 11. Kluwer, Dordrecht.Google Scholar
  45. 45.
    Belttratti A., Margarita S., Terna P.(1996) Neural Networks for Economic and Financial Modeling. International Thomson Computer Press, London, UK.Google Scholar
  46. 46.
    Bhattacharyya S., Pictet O., Zumbach G. (1998) Representational Semantics for Genetic Programming Based Learning in High-Frequency Financial Data. In: Koza J. R., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Fogel D. B., Garzon M. H., Goldberg D. E., Iba H., Riolo R. (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann, 11–16Google Scholar
  47. 47.
    Birchenhall C. R. (1995) Modular Technical Change and Genetic Algorithms. Computational Economics 8(3), 233–253MATHCrossRefGoogle Scholar
  48. 48.
    Birchenhall C. R. (1996) Evolutionary Games and Genetic Algorithms. In: Gilli M. (Ed.), Computational Economic Systems: Models, Methods & Econometrics, The Series Advances in Computational Economics 5. Kluwer Academic Publishers, Dordrecht, 3–23Google Scholar
  49. 49.
    Birchenhall CR., Kastrinos N., Metcalfe S. (1997) Genetic Algorithms in Evolutionary Modelling. Journal of Evolutionary Economics 7(4), 375–393CrossRefGoogle Scholar
  50. 50.
    Bullard J., Duffy J. (1998) A Model of Learning and Emulation with Artificial Adaptive Agents. Journal of Economic Dynamics and Control 22,179–207MathSciNetCrossRefGoogle Scholar
  51. 51.
    Bullard J., Duffy J. (1998) Learning and the Stability of Cycles. Macroeconomic Dynamics 2(1), 22–48MATHGoogle Scholar
  52. 52.
    Bullard J., Duffy J. (1999) Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs. Computational Economics 13(1),41–60MATHCrossRefGoogle Scholar
  53. 53.
    Cacho O., Simmons P. (1999) A Genetic Algorithm Approach to Farm Investment. Australian Journal of Agricultural and Resource Economics, 43(3),305–322CrossRefGoogle Scholar
  54. 54.
    Casti J. L. (1997) Would-Be Worlds. John Wiley, New York.Google Scholar
  55. 55.
    Chattoe E. (1997) Modelling Economic Interaction Using a Genetic Algorithm. In: Back T., Fogel D., Michalewicz Z. (Eds.) The Handbook of Evolutionary Computation. Oxford University Press/IOP Publishing, Section G7.1, 1–5Google Scholar
  56. 56.
    Chalk K., Smith G. D. (1997) Multi-Agent Classifier Systems and the Iterated Prisoner’s Dilemma. In: Smith G. D., Steele N. C, Albrecht R. F. (Eds.), Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, 615–618Google Scholar
  57. 57.
    Chattoe E., Gilbert N. (1997) A Simulation of Adaptation Mechanisms in Budgetary Decision Making. In: Conte R., Hegselmann R., Terna P. (Eds.), Simulating Social Phenomena. Springer-Verlag, 401–418CrossRefGoogle Scholar
  58. 58.
    Chen J.-S., Deng S.-X., Lin P.-C. (2000) Generation of Trading Strategies Using Genetic Algorithms. In: Wang P. (Ed.), Proceedings of the Fifth Joint Conference on Information Sciences, Vol. II, 921–924Google Scholar
  59. 59.
    Chen S.-H. (1997a) Occam’s Razor as an Emerging Property of ALIFE Economic Systems. In: Proceedings of the VII the Conference of International Association for the Development of Interdisciplinary Research on Learning: From Natural Principle to Artificial Methods, University of Geneva, 59–62Google Scholar
  60. 60.
    Chen S.-H. (1997b) On the Artificial Life of the General Economic System (I): the Role of Selection Pressure. In: Hara F., Yoshida K. (Eds.), Proceedings of International Symposium on System Life, 233–240Google Scholar
  61. 61.
    Chen S.-H. (1998a) Modeling Volatility with Genetic Programming: A First Report. Neural Network World 8(2), 181–190Google Scholar
  62. 62.
    Chen S.-H. (1998b) Evolutionary Computation in Financial Engineering: A Roadmap to GAs and GP. Financial Engineering News, Vol. 2, No. 4.Google Scholar
  63. 63.
    Chen S.-H. (1998c) Can We Believe that Genetic Algorithms Would Help without Actually Seeing Them Work in Financial Data Mining?: Part I, The Foundations. In: Xu L., Chan L. W., King I., Fu A. (Eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining. Springer-Verlag, Singapore, 81–87Google Scholar
  64. 64.
    Chen S.-H. (2000a) Toward an Agent-Based Computational Modeling of Bargaining Strategies in Double Auction Markets with Genetic Programming. In: Leung K.S., Chan L.-W., Meng H. (Eds.), Intelligent Data Engineering and Automated Learning- IDEAL 2000: Data Mining, Financial Engineering, and Intelligent Agents, Lecture Notes in Computer Sciences 1983. Springer, 517–531CrossRefGoogle Scholar
  65. 65.
    Chen S.-H. (2000b) Evolving Bargaining Strategies with Genetic Programming: An Overview of “AIE-DA, Version 1”. In: Proceedings of the Second Asia-Pacific Conference on Genetic Algorithms and Applications. Global Link Publishing Company, Hong Kong, 388–396Google Scholar
  66. 66.
    Chen S.-H. (2001a) Fundamental Issues in the Use of Genetic Programming in Agent-Based Computational Economics. In: Namatame A. (Ed.), Proceedings of the First International Workshop on Agent-based Approaches in Economic and Social Complex Systems, 175–185Google Scholar
  67. 67.
    Chen S.-H. (2001b) On the Relevance of Genetic Programming to Evolutionary Economics. In: Aruka Y. (Ed.), Evolutionary Controversies in Economics: A New Transdisciplinary Approach. Springer-Verlag, Tokyo, 135–150CrossRefGoogle Scholar
  68. 68.
    Chen S.-H., Chen C.-F. (1995) Can GA-Based Technical Trading Rules Survive Well During the 1990–91 World-Wide Recession? Evaluation Based on the Crash of TAIEX and NIKKEI. In: Steele H. C, Yau O. (Eds.), Proceedings of International Conference on “Global Business in Transition: Prospects for the Twenty First Century”, Vol. II. Center for International Business Studies (CIBS), Lingnan College, Hong Kong, 591–598Google Scholar
  69. 69.
    Chen S.-H., Chen C.-F. (1998) Can We Believe that Genetic Algorithms Would Help without Actually Seeing Them Work in Financial Data Mining?: Part II, Empirical Tests. In: Xu L., Chan L. W., King I., Fu A. (Eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining. Springer-Verlag, Singapore, 89–97Google Scholar
  70. 70.
    Chen S.-H., Kuo T.-W. (1999) Towards an Agent-Based Foundation of Financial Econometrics: An Approach Based on Genetic-Programming Artificial Markets. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 2. Morgan Kaufmann, 966–973Google Scholar
  71. 71.
    Chen S.-H., Lee W.-C. (1997a) Option Pricing with Genetic Algorithms: A First Report. In: Tan C.-C. (Ed.), Proceedings of the Second Chinese Congress on Intelligent Control and Intelligent Automation. Xi’an Jiaotong University Press, Xi’an, China, 1682–1688Google Scholar
  72. 72.
    Chen S.-H., Lee, W.-C. (1997b) Option Pricing with Genetic Algorithms: The Case of European-Style Options. In: T. Back (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Francisco, CA, 704–711Google Scholar
  73. 73.
    Chen S.-H., Lee W.-C. (1997c) Option Pricing with Genetic Algorithms: Separating Out-of-the-Money from In-the-Money. In: Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, Vol. 1. IEEE Press, 110–115Google Scholar
  74. 74.
    Chen S.-H., Lee W.-C. (1997d) Estimating the Effective Tax Function with Genetic Algorithms. In: Alander J. T. (Ed.), Proceedings of the Third Nordic Workshop on Genetic Algorithms and Their Applications, 275–290Google Scholar
  75. 75.
    Chen S.-H., Lee W.-C. (1997e) Option Pricing with Genetic Algorithms: A Second Report. In: The 1997 IEEE International Conference on Neural Networks Proceedings, 21–25Google Scholar
  76. 76.
    Chen S.-H., Liao C.-C. (2000) Price Discovery in Agent-Based Computational Modeling of Artificial Stock Markets. In: Proceedings of the Second Asia-Pacific Conference on Genetic Algorithms and Applications. Global Link Publishing Company, Hong Kong, 380–387Google Scholar
  77. 77.
    Chen S.-H., Lin W.-Y. (1997a) On the Cognitive System Which Can Detect and Adapt to Intrinsic Novelties. In: Graham J., Shin D.-G. (Eds.), Proceedings of the 6th ISCA International Conference on Intelligent Systems, 187–192Google Scholar
  78. 78.
    Chen S.-H., Lin W.-Y. (1997b) Financial Data Mining with Adaptive Genetic Algorithms. In: Philip T. (Ed.), Proceedings of the 10th International Conference on Computer Applications in Industry and Engineering, 154–159Google Scholar
  79. 79.
    Chen S.-H., Lin W.-Y. (1997c) Rethinking the Appeal of Evolution: Empirical Evidence from the Financial Application of Genetic Algorithms. In: Proceedings of 1997 Emerging Technologies Workshop (ET’97), University College London, London, U.K., 79–94Google Scholar
  80. 80.
    Chen S.-H., Lin W.-Y. (1998a) The Appeal of Evolution: The Case of the RGA-Based Portfolios. In: Debnath N. C. (Ed.), Proceedings of the ISCA 13th International Conference, 125–130Google Scholar
  81. 81.
    Chen S.-H., Lin W.-Y. (1998b) Two Ways to Improve Genetic Algorithms in Financial Data Mining: Sell Short with Recursive GAs. In: Proceedings of the Seventh International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 2, 1090–1097Google Scholar
  82. 82.
    Chen S.-H., Lin W.-Y. (1998c) Rethinking the Appeal of Evolution: Empirical Evidences from the Financial Applications of Genetic Algorithms. Beijing Mathematics 4(2), 161–175Google Scholar
  83. 83.
    Chen S.-H., Lu C.-F. (1999) Would Evolutionary Computation Help in Designs of ANNs in Forecasting Exchange Rates? In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 267–274Google Scholar
  84. 84.
    Chen S.-H., Ni C.-C. (1996a) Genetic Algorithm Learning and the Chain-Store Game. In: Proceedings of 1996 IEEE International Conference on Evolutionary Computation. IEEE Press, 480–484CrossRefGoogle Scholar
  85. 85.
    Chen S.-H., Ni C.-C. (1996b) Understanding the Nature of Predatory Pricing in the Large-Scale Market Economy with Genetic Algorithms. In: Proceedings of the 1996 IEEE International Symposium on Intelligent Control. IEEE Press, 354–359CrossRefGoogle Scholar
  86. 86.
    Chen S.-H., Ni C.-C. (1997a) Coevolutionary Instability in Games: An Analysis Based on Genetic Algorithms. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 703–708Google Scholar
  87. 87.
    Chen S.-H., Ni C.-C. (1997b) Evolutionary Artificial Neural Networks and Genetic Programming: A Comparative Study Based on Financial Data. In: Smith G. D., Steele N. C, Albrecht R. F. (Eds.), Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, 397–400Google Scholar
  88. 88.
    Chen S.-H., Ni C.-C. (1998a) Simulating the Stability of Collusive Pricing of Oligopolists with Genetic Algorithms. In: John R. I. (Ed.), Recent Advances in Soft Computing, Vol. 1, 206–212Google Scholar
  89. 89.
    Chen S.-H., Ni C.-C. (1998b) Simulating the Adaptive Behaviour of Oligopolists: An Application of Genetic Algorithms. In: Neevel V. (Ed.), Proceedings of the 8th International Symposium on Dynamic Games and Applications, 153–157Google Scholar
  90. 90.
    Chen S.-H., Ni C.-C. (1999) Using Genetic Algorithms to Simulate the Evolution of an Oligopoly Game. In: McKay B., Yao X., Newton C. S., Kim J.-H., Furuhashi T. (Eds.), Simulated Evolution and Learning, Lecture Notes in Artificial Intelligence 1585. Springer, 293–300Google Scholar
  91. 91.
    Chen S.-H., Ni C.-C. (2000) Simulating the Ecology of Oligopolistic Competition with Genetic Algorithms. Knowledge and Information Systems 2, 310–339CrossRefGoogle Scholar
  92. 92.
    Chen S.-H., Tsao C.-Y. (1999a) Discovering Trading Rules with Genetic Algorithms: An Empirical Study Based on GARCH Time Series. In: Arabnia H. R. (Ed.), Proceedings of the International Conference on Artificial Intelligence, Vol. II. CSREA Press, 430–436Google Scholar
  93. 93.
    Chen S.-H., Taso C.-Y. (1999b) Genetic Algorithms and Trading Strategies: Evidences from the ARCH Nonlinear Time Series. In: Proceedings of the Eighth International Fuzzy Systems Association World Congress, Vol. 1, 315–319Google Scholar
  94. 94.
    Chen S.-H., Yeh C.-H. (1995a) Predicting Stock Returns with Genetic Programming: Do the Short-Term Nonlinear Regularities Exist? In: Fisher D. (Ed.), Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics, 95–101Google Scholar
  95. 95.
    Chen S.-H., Yeh C.-H. (1995b) On the Competitiveness of the Quantity Theory of Money: A Natural-Selection Test Based on Genetic Programming. In: Proceedings on the 11th International Conference on Advanced Science and Technology, 242–251Google Scholar
  96. 96.
    Chen S.-H., Yeh C.-H. (1995c) On the Coordination and Adaptability of the Large Economy: An Application of Genetic Programming to the Cobweb Model. In: Proceedings of the First International Conference on Applications of Dynamic Models to Economics, 121–159Google Scholar
  97. 97.
    Chen S.-H., Yeh C.-C. (1996a) Genetic Programming, Predictability, and Stock Market Efficiency. In: Vlacic L., Nguyen T., Cecez-Kecmanovic D. (Eds.), Modelling and Control of National and Regional Economies. Pergamon Press, Oxford, Great Britain, 283–288Google Scholar
  98. 98.
    Chen S.-H., Yeh C.-C. (1996b) Genetic Programming and the Efficient Market Hypothesis. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 45–53Google Scholar
  99. 99.
    Chen S.-H., Yeh C.-H. (1996c) Genetic Programming Learning and the Cobweb Model. In: Angeline P. (Ed.), Advances in Genetic Programming, Vol. 2, Chap. 22. MIT Press, Cambridge, MA, 443–466Google Scholar
  100. 100.
    Chen S.-H., Yeh C.-H. (1996d) Information Transmission, Market Efficiency and the Evolution of Information-Processing Technology. Journal of Technology Management, Vol. 1, No. 1, 23–41MathSciNetGoogle Scholar
  101. 101.
    Chen S.-H., Yeh C.-H. (1996e) Genetic Programming in Computable Financial Economics. In: Proceedings of the ISC A 11th Conference: Computers and Their Applications. ISCA Press, 135–138Google Scholar
  102. 102.
    Chen S.-H., Yeh C.-H. (1996f) Bridging the Gap between Nonlinearity Tests and the Efficient Market Hypothesis by Genetic Programming. In: Proceedings of the IEEE/I AFE 1996 Conference on Computational Intelligence for Financial Engineering. IEEE Press, 34–39Google Scholar
  103. 103.
    Chen S.-H., Yeh C.-H. (1996g) A Comparison of Forecast Accuracy between Genetic Programming and Other Forecastors: A Loss Differential Approach. In: Borrajo D., Isasi P. (Eds.), Proceedings of the First International Workshop on Machine Learning, Forecasting, and Optimization. Universidad Carlos III de Madrid Press, 39–52Google Scholar
  104. 104.
    Chen S.-H., Yeh C.-H. (1996h) On the Coordination and Adaptability of the Large Economy: An Application of Genetic Programming to the Cobweb Model. In: Preprints of 13th World Congress International Federation of Automatic Control, Vol. L, 279–284Google Scholar
  105. 105.
    Chen S.-H., Yeh C.-H. (1997a) Toward a Computable Approach to the Efficient Market Hypothesis: An Application of Genetic Programming. Journal of Economic Dynamics and Control 21(6),1043–1063MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Chen S.-H., Yeh C.-H. (1997b) Using Genetic Programming to Model Volatility in Financial Time Series. In: Koza J. R., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Fogel D. B., Garzon M. H., Goldberg D. E., Iba H., Riolo R. (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann, 58–63Google Scholar
  107. 107.
    Chen S.-H., Yeh C.-H. (1997c) Speculative Trades and Financial Regulations: Simulation Based on Genetic Programming. In: Ghose A. (Ed.), Working Notes of The IJCAI-97: Workshop on Business Applications of AI. Fifteenth International Joint Conference on Artificial Intelligence, 1–8Google Scholar
  108. 108.
    Chen S.-H., Yeh C.-H. (1997d) Modeling Speculators with Genetic Programming. In: Angeline P., Reynolds R. G., McDonnell J. R., Eberhart R. (Eds.), Evolutionary Programming VI, Lecture Notes in Computer Science, Vol. 1213. Springer-Verlag, Berlin, 137–147CrossRefGoogle Scholar
  109. 109.
    Chen S.-H., Yeh C.-H. (1997e) Speculative Trades and Financial Regulations: Simulations Based on Genetic Programming. In: Proceedings of the IEEE/I AFE 1997 Computational Intelligence for Financial Engineering. IEEE Press, 123–129CrossRefGoogle Scholar
  110. 110.
    Chen S.-H., Yeh C.-H. (1997f) Simulating Economic Transition Processes by Genetic Programming. In: Kulikowski R., Nahorski Z., Owsinski J. W. (Eds.), In: Proceedings of the International Conference on Transition to Advanced Market Institutions and Economies: Systems and Operations Research Challenges, 87–93Google Scholar
  111. 111.
    Chen S.-H., Yeh C.-H. (1997g) Trading Restrictions, Speculative Trades and Price Volatility: An Application of Genetic Programming. In: Proceedings of the 3rd International Mendel Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks, Rough Sets, 31–37Google Scholar
  112. 112.
    Chen S.-H., Yeh C.-H. (1997h) Using Genetic Programming to Model Volatility in Financial Time Series: The Case of Nikkei 225 and S&P 500. In: Proceedings of the 4th JAFEE International Conference on Investments and Derivatives, 288–306Google Scholar
  113. 113.
    Chen S.-H., Yeh C.-H. (1997i) Modelling Structural Changes with Genetic Programming: An Outline. In: Sydow A. (Ed.), Proceedings of 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 2: Numerical Mathematics. Wissenschaft & Technik Verlag, 621–626Google Scholar
  114. 114.
    Chen S.-H., Yeh C.-H. (1998) Genetic Programming in the Overlapping Generations Model: An Illustration with Dynamics of the Inflation Rate. In: Porto V. W., Saravanan N., Waagen D., Eiben A. E. (Eds.), Evolutionary Programming VII, Lecture Notes in Computer Science, Vol. 1447. Springer-Verlag, Berlin, 829–838CrossRefGoogle Scholar
  115. 115.
    Chen S.-H., Yeh C.-H. (1999a) Modeling the Expectations of Inflation in the OLG Model with Genetic Programming. Soft Computing 3(2), 53–62CrossRefGoogle Scholar
  116. 116.
    Chen S.-H., Yeh C.-H. (1999b) Genetic Programming in the Agent-Based Artificial Stock Market. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 2. IEEE Press, 834–841Google Scholar
  117. 117.
    Chen S.-H., Yeh C.-H. (1999c) On the Consequence of “Following the Herd”: Evidence from the Artificial Stock Market. In: Arabnia H. R. (Ed.), Proceedings of the International Conference on Artificial Intelligence, Vol. II. CSREA Press, 388–394Google Scholar
  118. 118.
    Chen S.-H., Yeh C.-H. (2000a) On the Role of Intensive Search in Stock Markets: Simulations Based on Agent-Based Computational Modeling of Artificial Stock Markets. In: Proceedings of the Second Asia-Pacific Conference on Genetic Algorithms and Applications. Global Link Publishing Company, Hong Kong, 397–402Google Scholar
  119. 119.
    Chen S.-H., Yeh C.-H. (2000b) Simulating Economic Transition Processes by Genetic Programming. Annals of Operation Research 97, 265–286MATHCrossRefGoogle Scholar
  120. 120.
    Chen S.-H., Yeh C.-H. (2001a) Evolving Traders and the Business School with Genetic Programming: A new Architecture of the Agent-Based Artificial Stock Market. Journal of Economic Dynamics and Control 25, 363–393MATHCrossRefGoogle Scholar
  121. 121.
    Chen S.-H., Yeh C.-H. (2001b) On the Emergent Properties of Artificial Stock Markets: The Efficient Market Hypothesis and the Rational Expectations Hypothesis. Forthcoming in Journal of Economic Behavior and Organization.Google Scholar
  122. 122.
    Chen S.-H., Chen C.-F., Tan C.-W. (1998) Toward an Effective Implementation of Genetic Algorithms in Financial Data Mining: Retraining Plus Validating. In: Xu L., Chan L. W., King I., Fu A. (Eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining. Springer-Verlag, Singapore, 99–105Google Scholar
  123. 123.
    Chen S.-H., Duffy J., Yeh C.-H. (1996a) Equilibrium Selection Using Genetic Programming. In: Amari S., Xu L., Chan L., King L, Leung K. (Eds.), Progress in Neural Information Processing, Vol. 2. Springer-Verlag, Singapore, 1341–1346Google Scholar
  124. 124.
    Chen S.-H., Duffy J., Yeh C.-H. (1996b) Genetic Programming in the Coordination Game with a Chaotic Best-Response Function. In: Angeline P., Back T., Fogel D. (Eds.), Evolutionary Programming: Proceeding of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, 277–286Google Scholar
  125. 125.
    Chen S.-H., Duffy J., Yeh C.-H. (1997) Genetic Programming in the Coordination Game with a Chaotic Best-Response Function. In: Fogel L., Angeline P., Back T. (Eds.), Evolutionary Programming V. MIT Press, 277–286Google Scholar
  126. 126.
    Chen S.-H., Duffy J., Yeh C.-H. (2001) Equilibrium Selection via Adaptation: Using Genetic Programming to Model Learning in a Co-Ordination Game. Forthcoming in Electronic Journal of Evolutionary Modeling and Economic Dynamics.Google Scholar
  127. 127.
    Chen S.-H., Lee W.-C, Yeh C.-H. (1998a) Pricing Financial Derivatives with Genetic Programming. In: Li G., Tang W., Chen M., Cui D. (Eds.), Systems Science and Its Applications. Tianjin People’s Publishing House, 144–156Google Scholar
  128. 128.
    Chen S.-H., Lee W.-C, Yeh C.-H. (1998b) Hedging Securities with Genetic Programming. In: Nakhaeizadeh G., Steurer E. (Eds.), ECML’98 Workshop Notes: Application of Machine Learning and Data Mining in Finance, 140–151Google Scholar
  129. 129.
    Chen S.-H., Lee W.-C, Yeh C.-H. (1999) Hedging Derivative Securities with Genetic Programming. International Journal of Intelligent Systems in Accounting, Finance and Management 8(4), 237–251Google Scholar
  130. 130.
    Chen S.-H., Lin W.-Y., Tsao C-Y. (1999) Genetic Algorithms, Trading Strategies and Stochastic Processes: Some New Evidence from Monte Carlo Simulations. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 114–121Google Scholar
  131. 131.
    Chen S.-H., Ni C-C, Feng S. (1997) Understanding the Nature of Predatory Pricing in Large-Scale Market Economy with Genetic Algorithms. Journal of Systems Engineering and Electronics 8(2), 33–44Google Scholar
  132. 132.
    Chen S.-H., Wang H.-S., Zhang B.-T. (1999) Forecasting High-Frequency Financial Time Series with Evolutionary Neural Trees: The Case of Hang-Seng Stock Index. In: Arabnia H. R. (Ed.), Proceedings of the International Conference on Artificial Intelligence, Vol. II. CSREA Press, 437–443Google Scholar
  133. 133.
    Chen S.-H., Yeh C-H., Lee W.-C. (1998) Option Pricing with Genetic Programming. In: Koza J., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Foegl D., Garson M., Goldberg D., Iba H., Riolo R. (Eds.), Proceedings of the Third Annual Genetic Programming Conference. Morgan Kaufmann Publishers, San Francisco, CA, 32–37Google Scholar
  134. 134.
    Chen S.-H., Yeh C.-H., Liao C.-C. (1999) Testing Rational Expectations Hypothesis with Agent-Based Models of Stock Markets. In: Arabnia H. R. (Ed.), Proceedings of the International Conference on Artificial Intelligence, Vol. II. CSREA Press, 381–387Google Scholar
  135. 135.
    Chen S.-H., Yeh C-H., Liao C.-C. (2000) Testing for Granger Causality in the Stock-Price Volume Relation: A Perspective from the Agent-Based Model of Stock Markets. In: Wang P. (Ed.), Proceedings of the Fifth Joint Conference on Information Sciences, Vol. II, 950–956Google Scholar
  136. 136.
    Cheung Y., Bedingfield S., Huxford S. (1997) Monitoring and Interpreting Evolved Behavior in an Oligopoly. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 697–702Google Scholar
  137. 137.
    Chidambaran N., Lee C.-W. J., Trigueros J. (1998) An Adaptive Evolutionary Approach to Option Pricing via Genetic Programming. In: Koza J., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Fogel D., Garzon M., Goldberg D., Iba H., Riolo R. (Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference. Morgan Kaufmann, San Francisco, CA, 187–192Google Scholar
  138. 138.
    Chidambaran N., Lee C.-W. J., Trigueros J. (1999) Option Pricing via Genetic Programming. In: Abu-Mostafa Y. S., LeBaron B., Lo A. W., Weigend A. S. (Eds.), Computational Finance - Proceedings of the Sixth International Conference. MIT Press, Cambridge, MA.Google Scholar
  139. 139.
    Chiraphadhanakful S., Dangprasert P., Avatchanakorn V. (1997) Genetic Algorithms in Forecasting Commercial Banks Deposit. In: Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, Vol. 1. IEEE Press, 116–121Google Scholar
  140. 140.
    Colin A. M. (1994) Genetic Algorithms for Financial Modeling. In: Deboeck G. J. (Ed.), Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets. John Wiley & Sons, 148–173Google Scholar
  141. 141.
    Costa P. (1997) A Methodology for the Analysis of Complex Systems Based on Qualitative Reasoning, Stochastic Complexity and Genetic Programming. In: Koza J.R. (Ed.), Late Breaking Papers at the Genetic Programming 1997 Conference, 35–41Google Scholar
  142. 142.
    Curzon Price T. (1997) Using Co-Evolutionary Programming to Simulate Strategic Behaviour in Markets. Journal of Evolutionary Economics 7(3), 219–254CrossRefGoogle Scholar
  143. 143.
    Darwen P. J., Yao X. (2001) Why More Choices Cause Less Cooperation in Iterated Prisoner’s Dilemma. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2. IEEE Press, 987–994Google Scholar
  144. 144.
    Davis L. (1994) Genetic Algorithms and Financial Applications. In: Deboeck G. J. (Ed.), Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets. John Wiley & Sons, 133–147Google Scholar
  145. 145.
    Dawid H. (1996a) Learning of Cycles and Sunspot Equilibria by Genetic Algorithms. Journal of Evolutionary Economics 6(4), 361–373MathSciNetCrossRefGoogle Scholar
  146. 146.
    Dawid H. (1996b) Adaptive Learning by Genetic Algorithms: Analytical Results and Applications to Economical Models. Springer, Heidelberg and New York.CrossRefGoogle Scholar
  147. 147.
    Dawid H. (1996c) Algorithms as a Model of Adaptive Learning in Economic Systems. Central European Journal for Operations Research and Economics 4(1), 7–23MATHGoogle Scholar
  148. 148.
    Dawid H. (1999) On the Convergence of Genetic Learning in a Double Auction Market. Journal of Economic Dynamics and Control 23, 1544–1567MathSciNetCrossRefGoogle Scholar
  149. 149.
    Dawid H., Kopel M. (1998) On Economic Applications of the Genetic Algorithm: A Model of the Cobweb Type. Journal of Evolutionary Economics 8(3), 297–315CrossRefGoogle Scholar
  150. 150.
    Dawid H., Mehlmann A. (1996) Genetic Learning in Strategic form Games. Complexity 1(5), 51–59MathSciNetCrossRefGoogle Scholar
  151. 151.
    Delgado A. et al. (1996) Hybrid System: Neural Networks and Genetic Algorithms Applied in Nonlinear Regression and Time Series Forecasting. In: Prat A. (Ed.), COMPSTAT: Proceedings in Computational Statistics. Physica, Heidelberg, 217–222Google Scholar
  152. 152.
    Dorsey R. E., Johnson J. D., Mayer W. J. (1994) A Genetic Algorithm for the Training of Feedforward Neural Networks. In: Johnson J. D., Whinston A. B. (Eds), Advances in Artificial Intelligence in Economics, Finance, and Management, Vol. 1. JAI Press, Greewich, CT, 93–111Google Scholar
  153. 153.
    Dorsey R. E., Mayer W. J. (1995a) Genetic Algorithms for Estimation Problems with Multiple Optima, Nondifferentiability, and Other Irregular Features. Journal of Business and Economic Statistics 13(1),53–66Google Scholar
  154. 154.
    Dorsey R. E., Mayer W. J. (1995b) Optimization Using Genetic Algorithms. In: Johnson J. D., Whinston A. B. (Eds), Advances in Artificial Intelligence in Economics, Finance, and Management, Vol. 1. JAI Press, Greewich, CT, 69–91Google Scholar
  155. 155.
    Dosi G., Marengo L., Bassanini A., Valente M. (1999) Norms as Emergent Properties of Adaptive Learning: The Case of Economic Routines. Journal of Evolutionary Economics 9(1), 5–26CrossRefGoogle Scholar
  156. 156.
    Duffy J. (2001) Learning to Speculate: Experiments with Artificial and Real Agents. Journal of Economic Dynamics and Control 25,295–319MathSciNetMATHCrossRefGoogle Scholar
  157. 157.
    Duffy J., Feltovich N. (1999) Does Observation of Others Affect Learning in Strategic Environments? An Experimental Study. International Journal of Game Theory 28, 131–152MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    Duffy J., McNelis P. D. (2001) Approximating and Simulating the Stochastic Growth Model: Parameterized Expectations, Neural Networks, and the Genetic Algorithm. Journal of Economic Dynamics and Control 25(9), 1273–1303MathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    Dworman G., Kimbrough S. O., Laing J. D. (1996) Bargaining by Artificial Agents in Two Coalition Games: A Study in Genetic Programming for Electronic Commerce. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 54–62Google Scholar
  160. 160.
    Edmonds B., Moss S. J. (1997) Modeling Bounded Rationality Using Evolutionary Techniques. In: AISB’97 Workshop on Evolutionary Computation, Lecture Notes in Computer Science 1305, 31–42Google Scholar
  161. 161.
    Edmonds B. (1998) Gossip, Sexual Recombination and the El Farol Bar: Modeling the Emergence of Heterogeneity. In: Computation in Economics, Finance and Engineering: Economic Systems. Society for Computational Economics, Cambridge, England.Google Scholar
  162. 162.
    Eglit J. T. (1994) Trend Prediction in Financial Time Series. In: Koza J. (Ed.), Genetic Algorithms at Stanford. Stanford Bookstore, Stanford, CA, 31–40Google Scholar
  163. 163.
    Eiben A. E., Koudijs A. E., Süsser F. (1998), Genetic Modelling of Customer Retention. In: Banzhaf W., Poli R., Schoenauer M., Fogarty T. C. (Eds.), Genetic Programming: Proceedings of the First European Workshop on Genetic Programming. Springer, 178–186Google Scholar
  164. 164.
    Eriksson A., Lindgren K. (2001) Evolution of Strategies in Repeated Stochastic Games with Full Information of the Payoff Matrix. In: Spector L., Goodman E. D., Wu A., Langdon W. B., Voigt H.-M., Gen M., Sen S., Dorigo M., Pezeshk S., Garzon M. H., Burke E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 853–859Google Scholar
  165. 165.
    Esparcia-Alcazar A. I., Sharman K. C. (1996) Some Applications of Genetic Programming in Digital Signal Processing. In: Koza J. (Ed.), Late Breaking Papers at the Genetic Programming 1996 Conference. Stanford Bookstore, Stanford, CA, 24–31Google Scholar
  166. 166.
    Eymann T., Padovan B., Schoder D. (1998) Artificial Coordination-Simulating Organizational Changes with Artificial Life Agents. In: Computation in Economics, Finance and Engineering: Economic Systems. Society for Computational Economics, Cambridge, England.Google Scholar
  167. 167.
    Farley A. M., Jones S. (1994) Using a Genetic Algorithm to Determine an Index of Leading Economic Indicators. Computational Economics 7(3), 163–173MATHCrossRefGoogle Scholar
  168. 168.
    Fernandez T., Evett M. (1997) Training Period Size and Evolved Trading Systems. In: Koza J. R., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Fogel D. B., Garzon M. H., Goldberg D. E., Iba H., Riolo R. (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann, 95Google Scholar
  169. 169.
    Fernandez T., Evett M. (1998a) Numeric Mutation as an Improvement to Symbolic Regression in Genetic Programming. In: Porto V. W., Saravanan N., Waagen D., Eiben A. E. (Eds.), Evolutionary Programming VII, Lecture Notes in Computer Science, Vol. 1447. Springer-Verlag, Berlin, 251–260CrossRefGoogle Scholar
  170. 170.
    Fernandez T., Evett M. (1998b) Numeric Mutation Improves the Discovery of Numeric Constants in Genetic Programming. In: Koza J., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Foegl D., Garson M., Goldberg D., Iba H., Riolo R. (Eds.), Proceedings of the Third Annual Genetic Programming Conference. Morgan Kaufmann Publishers, San Francisco, CA, 66–71Google Scholar
  171. 171.
    Ficici S. G., Melnik O., Pollack J. (2000) A Game-Theoretic Investigation of Selection Methods Used in Evolutionary Algorithms. In: Congress on Evolutionary Computation 2000, Vol. 2. IEEE Press, 880–887Google Scholar
  172. 172.
    Fischer M. M., Leung Y. (1998) A Genetic-Algorithms Based Evolutionary Computational Neural Network for Modelling Spatial Interaction Data. Annals of Regional Science 32(3), 437–458CrossRefGoogle Scholar
  173. 173.
    Fogel D. B. (1993) Evolving Behaviors in the Iterated Prisoner’s Dilemma. Evolutionary Computation 1(1), 77–97MathSciNetCrossRefGoogle Scholar
  174. 174.
    Fogel D. B. (1995) On the Relationship between the Duration of an Encounter and the Evolution of Cooperation in the Iterated Prisoner’s Dilemma. Evolutionary Computation 3, 349–363MathSciNetCrossRefGoogle Scholar
  175. 175.
    Fogel D. B., Fogel L. J. (1996) Preliminary Experiments on Discriminating between Chaotic Signals and Noise Using Evolutionary Programming. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 512–521Google Scholar
  176. 176.
    Fogel D. B., Harraid P. G. (1994) Evolving Continuous Behaviors in the Iterated Prisoner’s Dilemma. In: Sebald A., Fogel L. (Eds.), The Third Annual Conference on Evolutionary Programming. World Scientific, Singapore, 119–130Google Scholar
  177. 177.
    Fogel D. B., Chellapilla K., Angeline P. J. (1999) Inductive Reasoning and Bounded Rationality Reconsidered. IEEE Transactions on Evolutionary Computation 3(2), 142–146CrossRefGoogle Scholar
  178. 178.
    Fong L. Y., Szeto K. Y. (2000) Rules Extraction in Short Memory Time Series Using Genetic Algorithms. Forthcoming in European Journal of Physics B.Google Scholar
  179. 179.
    Franke R. (1998) Coevolution and Stable Adjustments in the Cobweb Model. Journal of Evolutionary Economics 8(4), 383–406MathSciNetCrossRefGoogle Scholar
  180. 180.
    Prick A., Herrmann R., Kreidler M., Narr A., Seese D. (1996) A Genetic-Based Approach for the Derivation of Trading Strategies on the German Stock Market. In: Amari S., Xu L., Chan L., King I., Leung K. (Eds.), Progress in Neural Information Processing, Vol. 2. Springer-Verlag, Singapore, 766–770Google Scholar
  181. 181.
    Fritz S., Hosemann D. (1998) Behavior Scoring for Deutsche Bank’s German Corporates. In: Nakhaeizadeh G., Steurer E. (Eds.), Application of Machine Learning and Data Mining in Finance, 179–194Google Scholar
  182. 182.
    Fu K., Xu W. H. (1997) Training Neural Networks with Genetic Algorithms for Forecasting the Stock Price Index. In: Proceedings of the 1997 IEEE International Conference on Intelligent Processing Systems, Vol. 1. IEEE Press, 401–403Google Scholar
  183. 183.
    Fu T.-C., Chung F.-L., Ng V., Luk R. (2001) Evolutionary Segmentation of Financial Time Series into Subsequences. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 426–430Google Scholar
  184. 184.
    Fujiki C, Dickinson J. (1987) Using the Genetic Algorithm to Generate Lisp Source Code to Solve the Prisoner’s Dilemma. In: Grefenstette J. J. (Ed.), Genetic Algorithms and their Applications, Proceedings of the 2nd. International Conference on Genetic Algorithms. Lawrence Erlbaum, Hillsdale, NJ, 236–240Google Scholar
  185. 185.
    Fyfe C., Marney J. P., Tarbert H. (1999) Technical Analysis Versus Market Efficiency: A Genetic Programming Approach. Applied Financial Economics 9, 183–191CrossRefGoogle Scholar
  186. 186.
    Gaivoronski A. A. (1999) Modeling of Complex Economic Systems with Agent Nets. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 2. Morgan Kaufmann, 1265–1272Google Scholar
  187. 187.
    Gordillo F., Alcala I., Aracil J. (1999) A Tool for Solving Differential Games with Co-Evolutionary Algorithms. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 2. Morgan Kaufmann, 1535–1542Google Scholar
  188. 188.
    Hackworth T. (1999) India and Pakistan, a Classic “Richardson” Arms Race: A Genetic Algorithm Approach. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 2. Morgan Kaufmann, 1543–1550Google Scholar
  189. 189.
    Harland Z. (1999) Using Nonlinear Neurogenetic Models with Profit Related Objective Functions to Trade the US T-Bond Future. In: Abu-Mostafa Y. S., LeBaron B., Lo A. W., Weigend A. S. (Eds.), Computational Finance 1999. MIT Press, Cambridge, MA, 327–342Google Scholar
  190. 190.
    Harrald P. G. (1996) Evolutionary Algorithms and Economic Models: A View. In: Angeline P., Back T., Fogel D. (Eds.), Evolutionary Programming: Proceeding of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, 3–8Google Scholar
  191. 191.
    Harrald P. G., Fogel D. B. (1996) Evolving Continuous Behaviors in the Iterated Prisoner’s Dilemma. BioSystems 37(1–2),135–145CrossRefGoogle Scholar
  192. 192.
    Harrald P. G., Kamstra M. (1997) Evolving Artificial Neural Networks to Combine Financial Forecasts. IEEE Transactions on Evolutionary Computation 1(1), 40–52CrossRefGoogle Scholar
  193. 193.
    Hey mann D., Pearzzo R. P. J., Schuschny A. (1998) Learning and Contagion Effects in Transitions between Regimes: Some Schematic Multi-Agents Models. Journal of Management and Economics 2. <http://www.econ.uba.ar/www/servicios/publicaciones/journal4/contents/ contents.htm>Google Scholar
  194. 194.
    Hiden H., McKay B., Willis M., Montague G. (1998) Non-Linear Partial Least Squares Using Genetic Programming. In: Koza J., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Foegl D., Garson M., Goldberg D., Iba H., Riolo R. (Eds.), Proceedings of the Third Annual Genetic Programming Conference. Morgan Kaufmann Publishers, San Francisco, CA, 128–135Google Scholar
  195. 195.
    Hiemstra Y. (1996) Applying Neural Networks and Genetic Algorithms to Tactical Asset Allocation. Neurove$t Journal 4(3), 8–15Google Scholar
  196. 196.
    Ho T. H. (1996) Finite Automata Play Repeated Prisoner’s Dilemma with Information Processing Costs. Journal of Economic Dynamics and Control 20(1–3), 173–207MathSciNetCrossRefGoogle Scholar
  197. 197.
    Hoffmann R., Waring N. G. (1997) Complexity Cost and Two Types of Noise in the Repeated Prisoner’s Dilemma. In: Smith G. D., Steele N. C, Albrecht R. F. (Eds.), Artificial Neural Networks and Genetic Algorithms. Springer-Verlag, 619–623Google Scholar
  198. 198.
    Holland J. (1988) The Global Economy as An Adaptive Process. In: Arthur W. B., Durlauf S. N, Lane D. A. (Eds.), The Economy as an Evolving Complex System, SFI Studies in the Science of Complexity. Perseus Books Publishing, 117–124Google Scholar
  199. 199.
    Holland J., Miller J. (1991) Artificial Adaptive Agents in Economic Theory. American Economic Review 81(2), 365–370Google Scholar
  200. 200.
    Hillebrand E., Stender J. (Eds.) (1994) Many-Agent Simulation and Artificial Life. IOS Press, Amsterdam.MATHGoogle Scholar
  201. 201.
    Huck S., Müller W., Strobel M. (1999) On the Emergence of Attitudes Towards Risk. In: Brenner T. (Ed.), Computational Techniques for Modelling Learning in Economics, The Series Advances in Computational Economics 11. Kluwer, Dordrecht, 123–144CrossRefGoogle Scholar
  202. 202.
    Iba H., Kurita T., de Garis H., Sato T. (1993) System Identification Using Structured Genetic Algorithms. In: Forrest S. (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 279–286Google Scholar
  203. 203.
    Iba H., Nikolaev N. (2000) Genetic Programming Polynomial Models of Financial Data Series. In: Congress on Evolutionary Computation 2000, Vol. 2. IEEE Press, 1459–1466Google Scholar
  204. 204.
    Iba H., Sasaki T. (1999) Using Genetic Programming to Predict Financial Data. In: Angeline P. J., Michalewicz Z., Schoenauer M., Yao X., Zalzala A. (Eds.), Proceedings of the Congress on Evolutionary Computation, Vol. 1. IEEE Press, 244–251Google Scholar
  205. 205.
    Iglehart D. L., Voessner S. (1998) Optimization of a Trading System Using Global Search Techniques and Local Optimization. Journal of Computational Intelligence in Finance 6(6), 36–46Google Scholar
  206. 206.
    Irani Z., Sharif A. (1997) Genetic Algorithm Optimisation of Investment Justification Theory. In: Koza J. R. (Ed.), Late Breaking Papers at the Genetic Programming 1997 Conference, 87–92Google Scholar
  207. 207.
    Ishibuchi H., Nakari T., Nakashima T. (2000) Evolution of Strategies in Spatial IPD Games with Structured Demes. In: Whitley D., Goldberg D., Cantü-Paz E., Spector L., Parmee L, Beyer H.-G. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 817–824Google Scholar
  208. 208.
    Ishibuchi H., Sakamoto R., Nakashima T. (2001) Effect of Localized Selection on the Evolution of Unplanned Coordination in a Market Selection Game. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2. IEEE Press, 1011–1018Google Scholar
  209. 209.
    Ivanova P. J., Tagarev T. D., Hunter A. (1997) Selection of Indicators for Early Warning of Violent Political Conflicts by Genetic Algorithms. In: Proceedings of International Conference on Transition to Advanced Market Institutions and Economies, 180–183Google Scholar
  210. 210.
    Izumi K., Okatsu T. (1996) An Artificial Market Analysis of Exchange Rate Dynamics. In: Fogel L. J., Angeline P. J., Back T. (Eds.), Evolutionary Programming V. MIT Press, 27–36Google Scholar
  211. 211.
    Izumi K., Ueda K. (1998) Emergent Phenomena in a Foreign Exchange Market: Analysis Based on An Artificial Market Approach. In: Adami C, Belew R. K., Kitano H., Taylor C. E. (Eds.), Artificial Life VI. MIT Press, 398–402Google Scholar
  212. 212.
    Izumi K., Ueda K. (1999) Analysis of Dealers’ Processing Financial News Based on An Artificial Market Approach. Journal of Computational Intelligence in Finance 7, 23–33Google Scholar
  213. 213.
    Izumi K., Ueda K. (2000) Learning of Virtual Dealers in An Artificial Market: Comparison with Interview Data. In: Leung K. S., Chan L.-W., Meng H. (Eds.), Intelligent Data Engineering and Automated Learning- IDEAL 2000: Data Mining, Financial Engineering, and Intelligent Agents, Lecture Notes in Computer Sciences 1983. Springer, 511–516CrossRefGoogle Scholar
  214. 214.
    Jang G., Lai F., Parng T. (1993) Intelligent Stock Trading Decision Support System Using Dual Adaptive-Structure Neural Networks. Journal of Information Science and Engineering 9, 271–297Google Scholar
  215. 215.
    Jay White A. (1998) A Genetic Adaptive Neural Network Approach to Pricing Options: a Simulation Analysis. Journal of Computational Intelligence in Finance 6(5), 13–23Google Scholar
  216. 216.
    Joshi S., Bedau M. (1998) An Explanation of Generic Behavior in An Evolving Financial Market. In: Standish R., Henry B., Marks R., Stocker R., Green D., Keen S., Bossomaier T. (Eds.), Complex Systems’98. Complexity between the Ecos: From Ecology to Economics, 327–335Google Scholar
  217. 217.
    Joshi S., Parker J., Bedau M. A. (1999) Technical Trading Creates a Prisoner’s Dilemma: Results from An Agent-Based Model. In: Abu-Mostafa Y. S., LeBaron B., Lo A. W., Weigend A. S. (Eds.), Computational Finance 1999. MIT Press, Cambridge, MA, 465–479Google Scholar
  218. 218.
    Julstrom B. A. (1996) Contest Length, Noise, and Reciprocal Altruism in the Population of a Genetic Algorithm for the Iterated Prisoner’s Dilemma. In: Koza J. (Ed.), Late Breaking Papers at the Genetic Programming 1996 Conference. Stanford Bookstore, Stanford, CA, 88–93Google Scholar
  219. 219.
    Kaboudan M. A. (1998a) Forecasting Stock Returns Using Genetic Programming in C++. In: Cook D. (Ed.), FLAIRS Proceedings of the Eleventh Inter national Florida Artificial Intelligence Research Symposium Conference. AAAI Press, Menlo Park, CA, 73–77Google Scholar
  220. 220.
    Kaboudan M. A. (1998b) A GP Approach to Distinguish Chaotic form Noisy Signals. In: Koza J., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Foegl D., Garson M., Goldberg D., Iba H., Riolo R. (Eds.), Proceedings of the Third Annual Genetic Programming Conference. Morgan Kaufmann Publishers, San Francisco, CA, 187–191Google Scholar
  221. 221.
    Kaboudan M. A. (1999) A Measure of Time Series’s Predictability Using Genetic Programming Applied to Stock Returns. Journal of Forecasting 18, 345–357CrossRefGoogle Scholar
  222. 222.
    Kaboudan M. A. (2000) Genetic Programming Prediction of Stock Prices. Computational Economics 16(3),207–236MATHCrossRefGoogle Scholar
  223. 223.
    Kaboudan M. A. (2001a) Compumetric Forecasting of Crude Oil Prices. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 283–287Google Scholar
  224. 224.
    Kaboudan M. A. (2001b) Genetically Evolved Models and Normality of Their Fitted Residuals. Journal of Economic Dynamics and Control 25(11),1719–1749MATHCrossRefGoogle Scholar
  225. 225.
    Kaboudan M. A., Vance M. (1998) Statistical Evaluation of Symbolic Regression Forecasting of Time-Series. In: Proceedings of the International Federation of Automatic Control Symposium on Computation in Economics, Finance and Engineering: Economic Systems. Cambridge, UK.Google Scholar
  226. 226.
    Kargupta H., Buescher K. (1996) The Gene Expression Messy Genetic Algorithm for Financial Application. In: Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering. IEEE Press, 155–161CrossRefGoogle Scholar
  227. 227.
    Katz J. D., McCormick D. L. (1994) Neurogenetics and Its Use in Trading System Development. Neurove$t Journal 2(4), 8–11Google Scholar
  228. 228.
    Keber C. (2000) Option Valuation with the Genetic Programming Approach. In: Abu-Mostafa Y. S., LeBaron B., Lo A. W., Weigend A. S. (Eds.), Computational Finance - Proceedings of the Sixth International Conference. MIT Press, Cambridge, MA, 689–703Google Scholar
  229. 229.
    Keber C, Schuster M. G. (2001) Evolutionary Computation and the Vega Risk of American Put Options. IEEE Transactions on Neural Networks 12(4),704–715CrossRefGoogle Scholar
  230. 230.
    Kim Y. W., Park D. J. (1996) Genetic Algorithm Approach for Obtaining Guidance Laws in Differential Game. In: Filar J. A., Gaitsgory V., Imado K. (Eds.), Proceedings of the Seventh International Symposium on Dynamic Games and Applications, Vol. 2, 461–468Google Scholar
  231. 231.
    Kirman A. P., Vriend N. (2001) Evolving Market Structure: An ACE Model of Price Dispersion and Loyalty. Journal of Economic Dynamics and Control 25(3–4),459–502MATHCrossRefGoogle Scholar
  232. 232.
    Klos T. B. (1997) Spatially Coevolving Automata Play the Repeated Prisoner’s Dilemma. In: Conte R., Hegselmann R., Tema P. (Eds.), Simulating Social Phenomena. Springer-Verlag, 153–159CrossRefGoogle Scholar
  233. 233.
    Kosinski J. (1997) A Possibility of Application of Genetic Algorithms in Investment Project Cash-Flow Optimization. In: Proceedings of International Conference on Transition to Advanced Market Institutions and Economies, 234–239Google Scholar
  234. 234.
    Koza J. R. (1992) A Genetic Approach to Econometric Modeling. In: Bourgine P., Walliser B. (Eds.), Economics and Cognitive Science. Pergamon Press, 57–75Google Scholar
  235. 235.
    Koza J. R. (1995) Genetic Programming for Economic Modelling. In: Goonatilake S., Treleaven P. (Eds.), Intelligent Systems for Finance and Business. John Wiley & Sons, 251–269Google Scholar
  236. 236.
    Kuo R. J., Cheng C. H., Huang Y. C. (1999) Genetic Algorithm Initiated Fuzzy Neural Network with Application to Stock Market. In: Proceedings of the Eighth International Fuzzy Systems Association World Congress, Vol. 1, 372–376Google Scholar
  237. 237.
    Kwasnicki W., Kwasnicka H. (1992) Market, Innovation, Competition: An Evolutionary Model of Industrial Dynamics. Journal of Economic Behavior and Organization 19, 343–368CrossRefGoogle Scholar
  238. 238.
    Kwasnicki W. (1996) Knowledge, Innovation, and Economy. An Evolutionary Exploration. Edward Elgar, Cheltenham, UK.Google Scholar
  239. 239.
    Kwasnicki W., Kwasnicka H. (1997) Genetic Operators in An Evolutionary Model of Industrial Dynamics. In: Proceedings of the 3rd International Mendel Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks, Rough Sets, 77–82Google Scholar
  240. 240.
    Lam S. S. (2001) A Genetic Fuzzy Expert System for Stock Market Timing. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 410–417Google Scholar
  241. 241.
    Lane D., Kroujiline A., Petrov V., Sheblé G. (2000) Electricity Market Power: Marginal Cost and Relative Capacity Effects. In: Congress on Evolutionary Computation 2000, Vol. 2. IEEE Press, 1048–1055Google Scholar
  242. 242.
    LeBaron B. (2000) Agent Based Computational Finance: Suggested Reading and Early Research. Journal of Economic Dynamics and Control 24, 679–702MATHCrossRefGoogle Scholar
  243. 243.
    LeBaron B. (2001) Evolution and Time Horizons in An Agent Based Stock Market. Forthcoming in Macroeconomic Dynamics.Google Scholar
  244. 244.
    LeBaron B., Arthur W. B., Palmer R. (1999) Time Series Properties of An Artificial Stock Market. Journal of Economic Dynamics and Control 23, 1487–1516MATHCrossRefGoogle Scholar
  245. 245.
    Lensberg T. (1997) A Genetic Programming Experiment on Investment Behavior under Knightian Uncertainty. In: Koza J. R., Banzhaf W., Chellapilla K., Deb K., Dorigo M., Fogel D. B., Garzon M. H., Goldberg D. E., Iba H., Riolo R. (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference. Morgan Kaufmann, 231–239Google Scholar
  246. 246.
    Lensberg T. (1999) Investment Behavior under Knightian Uncertainty - An Evolutionary Approach. Journal of Economic Dynamics and Control 23, 1587–1604MATHCrossRefGoogle Scholar
  247. 247.
    Lent B. (1994) Evolution of Trader Strategies Using Genetic Algorithms and Genetic Programming. In: Koza J. R. (Ed.), Genetic Algorithms at Stanford 1994. Standford Bookstore, Standford, CA, 87–98Google Scholar
  248. 248.
    Lettau M. (1997) Explaining the Facts with Adaptive Agents: the Case of Mutual Fund Flows. Journal of Economic Dynamics and Control 21(7), 1117–1147MATHCrossRefGoogle Scholar
  249. 249.
    Leinweber D., Arnott R. (1995) Quantitative and Computational Innovation in Investment Management. Journal of Portfolio Management 21(2), 8–15CrossRefGoogle Scholar
  250. 250.
    Lindgren K. (1991) Evolutionary Phenomena in Simple Dynamics. In: Langton C, Taylor C, Farmer J., Rasmussen S., (Eds.), Artificial Life II, Vol. 10. Addison-Wesley, Reading, 295–324Google Scholar
  251. 251.
    Lis J., Czapkiewicz A. (1996) The Loghyperbolic Distribution Fitting by Genetic Algorithm. In: Angeline P., Back T., Fogel D. (Eds.), Evolutionary Programming: Proceeding of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, 369–376Google Scholar
  252. 252.
    Liu Y., Yao X. (2001) Evolving Neural Networks for Hang Seng Stock Index Forecast. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 256–260Google Scholar
  253. 253.
    Loraschi A., Tettamanzi A. (1996) An Evolutionary Algorithm for Portfolio Selection within a Downside Framework. In: Dunis C. (Ed.), Forecasting Financial Markets: Exchange Rates, Interest Rates and Asset Management. John Wiley & Sons, 275–285Google Scholar
  254. 254.
    Macy M. (1996) Natural Selection and Social Learning in Prisoner’s Dilemma: Co-Adaptation with Genetic Algorithms and Artificial Neural Networks. In: Liebrand W. B., Messick D. M. (Eds.), Frontiers in Social Dilemmas Research. Springer, Heidelberg and New York, 235–265CrossRefGoogle Scholar
  255. 255.
    Mahfoud S., Mani G. (1996) Financial Forecasting Using Genetic Algorithms. Applied Artificial Intelligence 10, 543–565CrossRefGoogle Scholar
  256. 256.
    Marengo L., Tordjman H. (1996) Speculation, Heterogeneity and Learning: A Simulation Model of Exchange Rates Dynamics. Kyklos 49(3),407–438CrossRefGoogle Scholar
  257. 257.
    Margarita S., Beltratti A. (1993) Stock Prices and Volume in An Artificial Adaptive Stock Market. In: New Trends in Neural Computation: International Workshop on Artificial Networks. Springer Verlag, Berlin, 714–719CrossRefGoogle Scholar
  258. 258.
    Marimon R. (1993) Adaptive Learning, Evolutionary Dynamics and Equilibrium Selection in Games. European Economic Review 37, 603–611CrossRefGoogle Scholar
  259. 259.
    Marimon R., McGrattan E., Sargent T. (1990) Money as a Medium of Exchange in An Economy with Artificially Intelligent Agents. Journal of Economic Dynamics and Control 14, 329–374MathSciNetMATHCrossRefGoogle Scholar
  260. 260.
    Marin F. J., Sandoval F. (1997) Electric Load Forecasting with Genetic Neural Networks. In: Smith G. D., Steele N. C, Albrecht R. F. (Eds.), Artificial Neural Networks and Genetic Algorithms. Springer-Ver lag, 49–52Google Scholar
  261. 261.
    Markose S., Tsang E., Er H., Salhi A. (2001) Evolutionary Arbitrage for FTSE-100 Index Options and Futures. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 275–282Google Scholar
  262. 262.
    Marks R. E. (1989a) Niche Strategies: the Prisoner’s Dilemma Computer Tournaments Revisited. AGSM Working Paper 89–009. <http://www.econ.uba.ar/www/servicios/publicaciones/journal4/contents/ contents.htm>Google Scholar
  263. 263.
    Marks R. E. (1989b) Breeding Optimal Strategies: Optimal Behavior for Oligopolists. In: Schaffer J. D. (Ed.), Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 198–207Google Scholar
  264. 264.
    Marks R. E. (1992a) Repeated Games and Finite Automata. In: Creedy J., Borland J., Eichberger J. (Eds), Recent Developments in Game Theory. Edward Elgar, Aldershot, 43–64Google Scholar
  265. 265.
    Marks R. E. (1992) Breeding Optimal Strategies: Optimal Behavior for Oligopolists. Journal of Evolutionary Economics 2(1), 17–28MathSciNetCrossRefGoogle Scholar
  266. 266.
    Marks R. E. (1998) Evolved Perception and Behaviour in Oligopolies. Journal of Economic Dynamics and Control 22(8–9), 1209–1233MATHCrossRefGoogle Scholar
  267. 267.
    Marks R. E., Schnabl H. (1999) Genetic Algorithms and Neural Networks: A Comparison Based on the Repeated Prisoner’s Dilemma. In: Brenner T. (Ed.), Computational Techniques for Modelling Learning in Economics, The Series Advances in Computational Economics 11. Kluwer, Dordrecht, 197–219CrossRefGoogle Scholar
  268. 268.
    Marks R. E., Midgley D. F., Cooper L. G. (1995) Adaptive Behavior in An Oligopoly. In: Biethahn J., Nissen V. (Eds.), Evolutionary Algorithms in Management Applications. Springer-Verlag, Berlin, 225–239CrossRefGoogle Scholar
  269. 269.
    Marks R. E., Midgley D. F., Cooper L. G. (1998) Refining the Breeding of Hybrid Strategies. Australian Graduate School of Management Working Paper 98–017, Sydney. <http://www.agsm.edu.au/~bobm/papers/wp98017.html>Google Scholar
  270. 270.
    Marks R. E., Midgley D. F., Cooper L. G. (2000) Breeding Better Strategies in Oligopolistic Price Wars. Paper submitted to the IEEE Transactions on Evolutionary Computation, special issue on Agent-Based Modelling of Evolutionary Economic Systems, INSEAD Working Paper 2000/65/MKT. <http://www.econ.uba.ar/www/servicios/publicaciones/journal4/contents/ contents.htm>Google Scholar
  271. 271.
    Marks R. E., Midgley D. F., Cooper L. G., Shiraz G. M. (1998) The Complexity of Competitive Marketing Strategies. In: Standish R., Henry B., Marks R., Stocker R., Green D., Keen S., Bossomaier T. (Eds.) Complex Systems’98. Complexity between the Ecos: From Ecology to Economics, 336–345Google Scholar
  272. 272.
    Marks R. E., Midgley D. F., Cooper L. G., Shiraz G. M. (1999) Coevolution with Genetic Algorithms: Repeated Differential Oligopolies. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 2. Morgan Kaufmann, 1609–1615Google Scholar
  273. 273.
    McCain R. A. (1994) Genetic Algorithms, Teleological Conservatism, and the Emergence of Optimal Demand Relations: the Case of Stable Preferences. Computational Economics 7(3), 187–202MATHCrossRefGoogle Scholar
  274. 274.
    McFadzean D., Tesfatsion L. (1999) A C++ Platform for the Evolution of Trade Networks. Computational Economics 14, 109–134MATHCrossRefGoogle Scholar
  275. 275.
    Mehta K., Bhattacharyya S. (1999) Combining Rules Learnt Using Genetic Algorithms for Financial Forecasting. In: Proceedings of the 1999 Congress on Evolutionary Computation. IEEE Press, 1245–1252Google Scholar
  276. 276.
    Midgley D. F., Marks R. E., Cooper L. G. (1997) Breeding Competitive Strategies. Management Science 43(3), 257–275MATHCrossRefGoogle Scholar
  277. 277.
    Miller J. H. (1996) The Coevolution of Automata in the Repeated Prisoner’s Dilemma. Journal of Economic Behavior and Organization 29(1), 87–112CrossRefGoogle Scholar
  278. 278.
    Miller J. H., Shubik M. (1994) Some Dynamics of a Strategic Market Game with a Large Number of Agents. Journal of Economics 60(1), 1–28MATHCrossRefGoogle Scholar
  279. 279.
    Muhammad A., King G. A. (1997) Foreign Exchange Market Forecasting Using Evolutionary Fuzzy Networks. In: Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering. IEEE Press, 213–219CrossRefGoogle Scholar
  280. 280.
    Mulloy B. S., Riolo R. L., Savit R. S. (1996) Dynamics of Genetic Programming and Chaotic Time Series Prediction. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 166–174Google Scholar
  281. 281.
    Mundhe M., Sen S. (2000) Evolving Agent Societies that Avoid Social Dilemmas. In: Whitley D., Goldberg D., Cantü-Paz E., Spector L., Parmee I., Beyer H.-G. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 809–816Google Scholar
  282. 282.
    Muzyka D. F., De Koning A. J. (1996) Towards a Theoretical Model for Adaptive Entrepreneurial Organizations Using Genetic Algorithms. INSEAD Working Paper: 96/85/ENTGoogle Scholar
  283. 283.
    Mydlowec W. (1997) Discovery by Genetic Programming of Empirical Macroe-conomic Models. In: Koza J. R. (Ed.), Genetic Algorithms and Genetic Programming at Stanford 1997. Stanford Bookstore, 168–177Google Scholar
  284. 284.
    Naing T. T., Mutoh A., Inuzuka N., Itoh H. (2000) A Framework in Which Rational Agents Yield Communal Profit. In: Proceedings of the Second Asia-Pacific Conference on Genetic Algorithms and Applications. Global Link Publishing Company, Hong Kong, 350–358Google Scholar
  285. 285.
    Neely C., Weiler P., Dittmar R. (1997) Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach. Journal of Financial and Quantitative Analysis 32(4),405–426CrossRefGoogle Scholar
  286. 286.
    Neely C. J., Weiler P. A. (1999) Technical Trading Rules in the European Monetary System. Journal of International Money and Finance 18(3),429–458CrossRefGoogle Scholar
  287. 287.
    Neubauer A. (1997) Prediction of Nonlinear and Nonstationary Time Series Using Self-Adaptive Evolutionary Strategies with Individual Memory. In: Back T. (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Francisco, CA, 727–734Google Scholar
  288. 288.
    Nicolaisen J., Smith M., Petrov V., Tesfatsion L. (2000) Concentration and Capacity Effects on Electricity Market Power. In: Congress on Evolutionary Computation 2000, Vol. 2. IEEE Press, 1041–1047Google Scholar
  289. 289.
    Nikolaev N., Iba H. (2001a) Genetic Programming Using Chebishev Polynomials. In: Spector L., Goodman E. D., Wu A., Langdon W. B., Voigt H.-M., Gen M., Sen S., Dorigo M., Pezeshk S., Garzon M. H., Burke E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 89–96Google Scholar
  290. 290.
    Nikolaev N. Y., Iba H. (2001b) Genetic Programming of Polynomial Models for Financial Forecasting. Forthcoming in IEEE Transactions on Evolutionary Computation.Google Scholar
  291. 291.
    Noe T. H., Pi L. (2000) Learning Dynamics, Genetic Algorithms, and Corporate Takeovers. Journal of Economic Dynamics and Control 24(2), 189–217MATHCrossRefGoogle Scholar
  292. 292.
    Noever D., Baskaran S. (1994) Genetic Algorithms Trading on the S&P 500. AI in Finance 1, 41Google Scholar
  293. 293.
    Novkovic S. (1998) A Genetic Algorithm Simulation of a Transition Economy: An Application to Insider-Privatization in Croatia. Computational Economics 11(3),221–243MATHCrossRefGoogle Scholar
  294. 294.
    Oakley E. H. N. (1994a) The Application of Genetic Programming to the Investigation of Short, Noisy, and Chaotic Data Series. In: Fogarty (Ed.), Evolutionary Programming, Lecture Notes in Computer Science 865. Springer-Verlag, Berlin, Germany, 320–332Google Scholar
  295. 295.
    Oakley E. H. N. (1994b) Two Scientific Applications of Genetic Programming: Stack Filters and Non-Linear Equation Fitting to Chaotic Data. In: Kinnear K. E. Jr. (Ed.) Advances in Genetic Programming. MIT Press, Cambridge, MA, 369–389Google Scholar
  296. 296.
    Oakley E. H. N. (1995) Genetic Programming as a Means of Assessing and Reflecting Chaos. In: Genetic Programming, AAAI-95 Fall Symposium Series, American Association for Artificial Intelligence, 68–72Google Scholar
  297. 297.
    Oakley E. H. N. (1996) Genetic Programming, the Reflection of Chaos, and the Bootstrap: Toward a Useful Test for Chaos. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 175–181Google Scholar
  298. 298.
    Oh J. C. (1999) Ostracism for Improving Cooperation in the Iterated Prisoner’s Dilemma Game. In: Angeline P. J., Michalewicz Z., Schoenauer M., Yao X., Zalzala A. (Eds.), Proceedings of the Congress on Evolutionary Computation, Vol. 2. IEEE Press, 891–896Google Scholar
  299. 299.
    Oh J. C. (2000) Benefits of Clustering among the Internet Search Agents Caught in the N-Person Prisoner’s Dilemma Game. In: Congress on Evolutionary Computation 2000, Vol. 2. IEEE Press, 864–871Google Scholar
  300. 300.
    Olsson L. (2000) Evolution of Bargaining Strategies for Continuous Double Auction Markets Using Genetic Programming. In: Wang P. (Ed.), Proceedings of the Fifth Joint Conference on Information Sciences, Vol. II, 961–964Google Scholar
  301. 301.
    O’Neill M., Brabazon T. (2001) Developing a Market Timing System Using Grammatical Evolution. In: Spector L., Goodman E. D., Wu A., Langdon W. B., Voigt H.-M., Gen M., Sen S., Dorigo M., Pezeshk S., Garzon M. H., Burke E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufmann, 1375–1381Google Scholar
  302. 302.
    Ostermark R. (1999) Solving Irregular Econometric and Mathematical Optimization Problems with a Genetic Hybrid Algorithm. Computational Economics 13(2),103–115CrossRefGoogle Scholar
  303. 303.
    Oussaidene M., Chopard B., Pictet O., Tomassini M. (1996) Parallel Genetic Programming: An Application to Trading Models Evolution. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 357–362Google Scholar
  304. 304.
    Ozyildirim S. (1996) Three-Country Trade Relations: A Discrete Dynamic Game Approach. Computers and Mathematics with Applications 32,43–56MathSciNetCrossRefGoogle Scholar
  305. 305.
    Ozyildirim S. (1997) Computing Open-Loop Noncooperative Solution in Discrete Dynamic Games. Journal of Evolutionary Economics 7(1), 23–40CrossRefGoogle Scholar
  306. 306.
    Ozyildirim S., Alemdar N. M. (2000) Learning the Optimum as a Nash Equilibrium. Journal of Economic Dynamics and Control 24(4),483–499MathSciNetCrossRefGoogle Scholar
  307. 307.
    Palmer R. G., Arthur W. B., Holland J. H., LeBaron B., Tayler P. (1994) Artificial Economic Life: A Simple Model of a Stockmarket. Physica D 75, 264–274MATHCrossRefGoogle Scholar
  308. 308.
    Page S. E. (1996) Two Measures of Difficulty. Economic Theory 8(2), 321–346MathSciNetMATHGoogle Scholar
  309. 309.
    Pereira R. (1997) Genetic Algorithms and Trading Rules. In: Creedy J., Martin V. L. (Eds.), Nonlinear Economic Models: Cross-sectional, Time Series and Neural Network Applications, 191–210Google Scholar
  310. 310.
    Phelan S. E. (1997) Innovation and Imitation as Competitive Strategies: Revisiting a Simulation Approach. In: Conte R., Hegselmann R., Terna P. (Eds.), Simulating Social Phenomena. Springer-Verlag, 385–400CrossRefGoogle Scholar
  311. 311.
    Pictet O. V., Docorogna M. M., Chopard B., Shirru M. O. R., Tomassini M. (1995) Using Genetic Algorithms for Robust Optimization in Financial Applications. In: Parallel Problem Solving from Nature-Applications in Statistics and Economics Workshop, Germany.Google Scholar
  312. 312.
    Rao S. S., Chellapilla K. (1996) Evolving Reduced Parameter Bilinear Models for Time Series Prediction Using Fast Evolutionary Programming. In: Koza J., Goldberg D., Fogel D., Riolo R. (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press, Cambridge, MA, 528–535Google Scholar
  313. 313.
    Rao S. S., Birru H. K., Chellapilla K. (1999) Evolving Nonlinear Time-Series Models Using Evolutionary Programming. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 2. IEEE Press, 236–243Google Scholar
  314. 314.
    Reeves C. R. (1997) Genetic Algorithms for the Operations Researchers. Informs Journal on Computing 9(3), 231–250MATHCrossRefGoogle Scholar
  315. 315.
    Riechmann T. (1998) Learning How to Learn. Towards An Improved Mutation Operator within GA Learning Models. In: Computation in Economics, Finance and Engineering: Economic Systems. Society for Computational Economics, Cambridge, England.Google Scholar
  316. 316.
    Riechmann T. (1999) Learning and Behavioural Stability: An Economic Interpretation of Genetic Algorithms. Journal of Evolutionary Economics 9(2), 225–242CrossRefGoogle Scholar
  317. 317.
    Riechmann T. (2001) Genetic Algorithm Learning and Evolutionary Games. Journal of Economic Dynamics and Control 25(6–7),1019–1037MATHCrossRefGoogle Scholar
  318. 318.
    Robinson G., Mcllroy P. (1995) Exploring Some Commercial Applications of Genetic Programming. In: Fogarty T. C. (Ed.), Evolutionary Computing. Lecture Notes in Computer Sciences. Springer-Verlag, Berlin.Google Scholar
  319. 319.
    Rodriguez-Vazquez K., Fleming P J. (1999) Genetic Programming for Dynamic Chaotic System Modelling. In: Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 1. IEEE Press, 22–28Google Scholar
  320. 320.
    Rogers D. (1997) Evolutionary Statistics: Using a Genetic Algorithm and Model Reduction to Isolate Alternate Statistical Hypotheses of Experimental Data. In: Back T. (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, San Francisco, CA, 735–742Google Scholar
  321. 321.
    Rolf S., Sprave J., Urfer W. (1997) Model Identification and Parameter Estimation of ARMA Models by Means of Evolutionary Algorithms. In: Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering. IEEE Press, 237–243CrossRefGoogle Scholar
  322. 322.
    Rubinson T., Yager R. R. (1996) Fuzzy Logic and Genetic Algorithms for Financial Risk Management. In: Proceedings of the IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering. IEEE Press, 90–95CrossRefGoogle Scholar
  323. 323.
    Rubinson T., Geotsi Georgetti (1996) Estimation of Subjective Preference Using Fuzzy Logic & Genetic Algorithms. In: Proceedings of the Sixth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol II, 781–786Google Scholar
  324. 324.
    Sargent T. J. (1993) Bounded Rationality in Macroeconomics. Oxford University Press, Oxford.Google Scholar
  325. 325.
    Sato Y., Nagaya S. (1996) Evolutionary Algorithms that Generate Recurrent Neural Networks for Learning Chaos Dynamics. In: Proceedings of 1996 IEEE International Conference on Evolutionary Computation. IEEE Press, 144–149CrossRefGoogle Scholar
  326. 326.
    Sato H., Namatame A. (2001) Co-Evolution in Social Interactions. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2. IEEE Press, 1109–1114Google Scholar
  327. 327.
    Sato H., Koyama Y., Kurumatani K., Shiozawa Y., Deguchi H. (2001) U-Mart: A Test Bed for Interdisciplinary Research into Agent-Based Artificial Markets. In: Aruka Y. (Ed.), Evolutionary Controversies in Economics: A New Transdisciplinary Approach. Springer-Verlag, Tokyo, 179–190CrossRefGoogle Scholar
  328. 328.
    Schmertmann C. P. (1996) Functional Search in Economics Using Genetic Programming. Computational Economics 9(4), 275–298MATHCrossRefGoogle Scholar
  329. 329.
    Seo Y.-G., Cho S.-B., Yao X. (1999) Emergence of Cooperative Coalition in NIPD Game with Localization of Interaction and Learning. In: Angeline P. J., Michalewicz Z., Schoenauer M., Yao X., Zalzala A. (Eds.), Proceedings of the Congress on Evolutionary Computation, Vol. 1. IEEE Press, 877–884Google Scholar
  330. 330.
    Seredynski F., Grzenda M. (1997) Behavior of Heterogeneous Agents in the Prisoner’s Dilemma. In: Proceedings of the 3rd International Mendel Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks, Rough Sets, 256–261Google Scholar
  331. 331.
    Sexton R. S. (1998) Identifying Irrelevant Input Variables in Chaotic Time Series Problems: Using a Genetic Algorithm for Training Neural Networks. Journal of Computational Intelligence in Finance 6(5), 34–41Google Scholar
  332. 332.
    Sheta A. F., De Jong K. (1996) Parameter Estimation of Nonlinear Systems in Noisy Environments Using Genetic Algorithms. In: Proceedings of the 1996 IEEE International Symposium on Intelligent Control. IEEE Press, 360–365CrossRefGoogle Scholar
  333. 333.
    Sheta A. F., De Jong K. (2000) Time-Series Forecasting Using GA-Tuned Radial Basis Functions. In: Wang P. (Ed.), Proceedings of the Fifth Joint Conference on Information Sciences, Vol. I, 1074–1077Google Scholar
  334. 334.
    Shoaf J., Foster J. (1996) A Genetic Algorithm Solution to the Efficient Set Problem: A Technique for Portfolio Selection Based on the Markowitz Model. In: Proceedings of the Decision Sciences Institute Annual Meeting.Google Scholar
  335. 335.
    Smith C. E. (1999) An Application of Genetic Programming to Investment System Optimization. In: Banzhaf W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakieia M., Smith R. E. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 2. Morgan Kaufmann, 1798Google Scholar
  336. 336.
    Smith S. N. (1998) Trading Applications of Genetic Programming. Financial Engineering News 2(6).Google Scholar
  337. 337.
    Staudinger S. (1999) Money as Medium of Exchange - An Analysis with Genetic Algorithm. Pennsylvania Economic Review 8(1), 1–9Google Scholar
  338. 338.
    Swernofsky S. (1994) Product Review: MircoGA. NeuroveSt Journal 2(4), 30–31Google Scholar
  339. 339.
    Szeto K. Y., Chan K. O., Cheung K. H. (1997) Application of Genetic Algorithms in Stock Market Prediction. In: Weigend A. S., Abu-Mostafa, Refenes A. P. N. (Eds.), Proceedings of the Fourth International Conference on Neural Networks in the Capital Markets: Progress in Neural Processing, World Scientific, 95–103Google Scholar
  340. 340.
    Szeto K. Y., Cheung K. H. (1998) Multiple Time Series Prediction Using Genetic Algorithms Optimizer. In: Xu L., Chan L. W., King I., Fu A. (Eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining. Springer-Verlag, Singapore, 127–133Google Scholar
  341. 341.
    Szeto K. Y., Luo P. X. (1999) Self-Organizing Behavior in Genetic Algorithm for the Forecasting of Financial Time Series. In: Proceedings of the International Conference on Forecasting Financial Markets.Google Scholar
  342. 342.
    Szeto K. Y., Luo P. X. (2000) How Adaptive Agents in Stock Market Perform in the Presence of Random News: A Genetic Algorithm Approach. In: Leung K. S., Chan L.-W., Meng H. (Eds.), Intelligent Data Engineering and Automated Learning- IDEAL 2000: Data Mining, Financial Engineering, and Intelligent Agents, Lecture Notes in Computer Sciences 1983. Springer, 505–510CrossRefGoogle Scholar
  343. 343.
    Szpiro G. G. (1997a) The Emergence of Risk Aversion. Complexity 2, 31–39MathSciNetCrossRefGoogle Scholar
  344. 344.
    Szpiro G. G.(1997b) A Search for Hidden Relationships: Data Mining with Genetic Algorithms. Computational Economics 10(3), 267–277CrossRefGoogle Scholar
  345. 345.
    Szpiro G. G. (1997c) Forecasting Chaotic Time Series with Genetic Algorithms. Physical Review E, 2557–2568Google Scholar
  346. 346.
    Szpiro G. G. (1999) Can Computers Have Sentiments? The Case of Risk Aversion and Utility for Wealth. In: Floreano D., Nicoud J-D, Mondada F. (Eds.), Advances in Artificial Life, Lecture Notes in Artificial Intelligence, Vol. 1674. Springer, Heidelberg, 365–376CrossRefGoogle Scholar
  347. 347.
    Tay 1er P. (1995) Modelling Artificial Stock Markets Using Genetic Algorithms. In Goonatilake S., Treleaven P. (Eds.), Intelligent Systems for Finance and Business. Wiley, New York, NY, 271–287Google Scholar
  348. 348.
    Tesfatsion L. (1996) An Evolutionary Trade Network Game with Preferential Partner Selection. In: Angeline P., Back T., Fogel D. (Eds.), Evolutionary Programming: Proceeding of the Fifth Annual Conference on Evolutionary Programming. MIT Press, Cambridge, MA, 45–54Google Scholar
  349. 349.
    Tesfatsion L. (1997a) A Trade Network Game with Endogenous Partner Selection. In: Amman H. M., Rustem B., Whinston A. B. (Eds.), Computational Approaches to Economic Problems. Kluwer Academic Publishers, Dordrecht, 249–269CrossRefGoogle Scholar
  350. 350.
    Tesfatsion L. (1997b) How Economists Can Get Alife. In: Arthur W. B., Durlauf S., Lane D. (Eds.), The Economy as an Evolving Complex System, II. Proceedings Volume XXVII, Santa Fe Institute Studies in the Sciences of Complexity. Addison-Wesley, Reading, MA, 533–564Google Scholar
  351. 351.
    Tesfatsion L. (1998) Preferential Partner Selection in Evolutionary Labor Markets: A Study in Agent-Based Computational Economics. In: Porto V. W., Saravanan N., Waagen D., Eiben A. E. (Eds.), Evolutionary Programming VII. Proceedings of the Seventh Annual Conference on Evolutionary Programming. Springer-Verlag, Berlin, 15–24Google Scholar
  352. 352.
    Tesfatsion L. (2000) Concentration, Capacity, and Market Power in An Evolutionary Labor Market. In: Congress on Evolutionary Computation 2000, Vol. 2. IEEE Press, 1033–1040Google Scholar
  353. 353.
    Tesfatsion L. (2001) Introduction to the Special Issue on Agent-Based Computational Economics. Journal of Economic Dynamics and Control 25, 281–293MATHCrossRefGoogle Scholar
  354. 354.
    Thomason M. (1994) Product Review: Genetic Training Option. Neurove St Journal 2(1), 25–27MathSciNetGoogle Scholar
  355. 355.
    Thomason M. (1996) Product Review: Neurogenetic Optimizer. Neurove$t Journal 4(3), 35–37Google Scholar
  356. 356.
    Trigueros J. (1997) A Nonparametric Approach to Pricing and Hedging Derivative Securities via Genetic Regression. In: Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering. IEEE Press, 1–6Google Scholar
  357. 357.
    Tsang E., Bulter J. M., Li J. (1998) EDDIE Beats the Bookies. Journal of Software, Practice and Experience 28(10),285–300Google Scholar
  358. 358.
    Tsang E., Li J. (2000) Combining Ordinal Financial Prediction with Genetic Programming. In: Leung K.S., Chan L.-W., Meng H. (Eds.), Intelligent Data Engineering and Automated Learning- IDEAL 2000: Data Mining, Financial Engineering, and Intelligent Agents, Lecture Notes in Computer Sciences 1983. Springer, 532–537CrossRefGoogle Scholar
  359. 359.
    Tsang E., Li J., Markose S., Er H., Salhi A., Iori G. (2001) EDDIE in Financial Decision Making. Journal of Management and Economics 4. <http://www.econ.uba.ar/www/servicios/publicaciones/journal4/contents/ contents.htm>
  360. 360.
    Tsang R., Lajbcygier P. (1999) Optimization of Technical Trading Strategy Using Split Search Genetic Algorithms. In: Abu-Mostafa Y. S., LeBaron B., Lo A. W., Weigend A. S. (Eds.), Computational Finance 1999. MIT Press, Cambridge, MA, 369–386Google Scholar
  361. 561.
    Uno K., Sato H., Namatame A. (1999) Social Evolution by Imitation. In: McKay B., Sarker R., Yao X., Tsujimura Y., Namatame A., Gen M. (Eds.), Proceedings of the Third Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, 33–40Google Scholar
  362. 362.
    Unver M. U. (2001) Backward Unraveling over Time: The Evolution of Strategic Behavior in the Entry Level British Medical Labor Markets. Journal of Economic Dynamics and Control 25(6–7),1039–1080CrossRefGoogle Scholar
  363. 363.
    Vacca L. (1997) Managing Options Risk with Genetic Algorithms. In: Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering. IEEE Press, 29–35CrossRefGoogle Scholar
  364. 364.
    Vallée T., Basar T. (1998) Incentive Stackelberg Solutions and the Genetic Algorithm. In: Neevel V. (Ed.), Proceedings of the 8th International Symposium on Dynamic Games and Applications, 633–639Google Scholar
  365. 365.
    Vallée T., Basar T. (1999) Off-Line Computation of Stackelberg Solutions with the Genetic Algorithm. Computational Economics 13(3), 201–209MATHCrossRefGoogle Scholar
  366. 366.
    Varetto F. (1998) Genetic Algorithms Applications in the Analysis of Insolvency Risk. Journal of Banking and Finance 22,1421–1439CrossRefGoogle Scholar
  367. 367.
    Vedarajan G., Chan L.C, Goldberg D. (1997) Investment Portfolio Optimization Using Genetic Algorithms. In: Koza JR (Ed.), Late Breaking Papers at the Genetic Programming 1997 Conference, 255–263Google Scholar
  368. 368.
    Vriend N. (1995) Self-Organization of Markets: An Example of a Computational Approach. Computational Economics 8, 205–231MATHCrossRefGoogle Scholar
  369. 369.
    Vriend N. J. (2000) An Illustration of the Essential Difference between Individual and Social Learning, and Its Consequences for Computational Analyses. Journal of Economic Dynamics and Control 24, 1–19MathSciNetMATHCrossRefGoogle Scholar
  370. 370.
    Vila X. (1997) Adaptive Artificial Agents Plays a Finitely Repeated Discrete Principal-Agent Game. In: Conte R., Hegselmann R., Terna P. (Eds.), Simulating Social Phenomena. Springer-Verlag, 437–456CrossRefGoogle Scholar
  371. 371.
    Waldrop M. M. (1992) Complexity: The Emerging Science at the Edge of Order and Chaos. Simon and Schuster.Google Scholar
  372. 372.
    Walker R., Barrow D., Gerrets M., Haasdijk E. (1994) Genetic Algorithms in Business. In: Stender J., Hillebrand E., Kingdon J. (Eds.), Genetic Algorithms in Optimisation, Simulation and Modelling. IOS press.Google Scholar
  373. 373.
    Walker R. F., Haasdijk E. W., Gerrets M. C. (1995) Credit Evaluation Using a Genetic Algorithm. In Goonatilake S., Treleaven P. (Eds.), Intelligent Systems for Finance and Business. Wiley, New York, NY, 39–59Google Scholar
  374. 374.
    Wang J. (2000) Trading and Hedging in S&P 500 Spot and Futures Markets Using Genetic Programming. Journal of Futures Markets 20(10),911–942CrossRefGoogle Scholar
  375. 375.
    Wang T. D., Fyfe C. (2000) Simulating Responses to Traffic Jams. In: Wang P. (Ed.), Proceedings of the Fifth Joint Conference on Information Sciences, Vol. II, 986–989Google Scholar
  376. 376.
    Warren M. A. (1994) Stock Price Prediction Using Genetic Programming. In: Koza J. (Ed.), Genetic Algorithms at Stanford 1994. Stanford Bookstore, Stanford, CA, 180–184Google Scholar
  377. 377.
    Wong F. (1994) Neurogenetic Computing Technology. NeuroveSt Journal 2(4), 12–15Google Scholar
  378. 378.
    Wu J., Axelrod R. (1995) How to Cope with Noise in the Iterated Prisoner’s Dilemma. Journal of Conflict Resolution 39(1), 183–189CrossRefGoogle Scholar
  379. 379.
    Yamashita T., Suzuki K., Ohuchi A. (1998) Agent Based Iterated Multiple Lake Game with Local Governments. In: Standish R., Henry B., Marks R., Stocker R., Green D., Keen S., Bossomaier T. (Eds.), Complex Systems’98. Complexity between the Ecos: From Ecology to Economics, 376–387Google Scholar
  380. 380.
    Yao X., Darwen P. J. (1994) An Experimental Study of N-Person Iterated Prisoner’s Dilemma Games. Informatica 18, 435–450MATHGoogle Scholar
  381. 381.
    Yao X., Liu Y. (1996) EPNet for Chaotic Time Series Prediction. In: Yao X., Kim J.-H., Furuhashi (Eds.), Simulated Evolution and Learning. Lecture Notes in Artificial Intelligence 1285. Springer, 146–156Google Scholar
  382. 382.
    Ye Z., Ren Q., Lin W. (1998) A Random Segment Searching Algorithm for Optimal Portfolio with Risk Control. In: Xu L., Chan L. W., King I., Fu A. (Eds.), Intelligent Data Engineering and Learning: Perspectives on Financial Engineering and Data Mining. Springer-Verlag, Singapore, 121–126Google Scholar
  383. 383.
    Zhu F., Guan S.-U. (2001) Towards Evolution of Software Agents in Electronic Commerce. In: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2. IEEE Press, 1303–1308Google Scholar
  384. 384.
    Zulkernine M., Uozumi T., Ono K. (1997) Genetic Based Fuzzy Inference System: Function Approximation and Time Series Prediction. Proceedings of the Third Joint Conference of Information Sciences, Vol. 1, 85–88Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Shu-Heng Chen
    • 1
  • Tzu-Wen Kuo
    • 1
  1. 1.AI-ECON Research Center, Department of EconomicsNational Chengchi UniversityTaipeiTaiwan

Personalised recommendations