Skip to main content

Evolutionary Computation and Economic Models: Sensitivity and Unintended Consequences

  • Chapter
Evolutionary Computation in Economics and Finance

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 100))

Abstract

The use of evolutionary models of complex adaptive systems is gaining attention. Such systems can generate surprising and interesting emergent behaviors. The sensitivity of these models, however, is often unknown and is rarely studied. The evidence reported here demonstrates that even small changes to simple models that adopt evolutionary dynamics can engender radically different emergent properties. This gives cause for concern when modeling complex systems, such as stock markets, where the emergent behavior depends on the collective allocation of resources of many purpose-driven agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline P. J. (1994) An Alternate Interpretation of the Iterated Prisoner’s Dilemma and the Evolution of Nonmutual Cooperation. In: Brooks R., Maes P. (Eds.) Artificial Life IV. Cambridge, MA: MIT Press, 353–358

    Google Scholar 

  2. Arthur W. B. (1994) Inductive Reasoning and Bounded Rationality. Amer. Econ. Assn. Papers Proc. 84, 406–411

    Google Scholar 

  3. Axelrod R. (1980a) Effective Choice in the Iterated Prisoner’s Dilemma. J. Conflict Resolution 24, 3–25

    Article  Google Scholar 

  4. Axelrod R. (1980b) More Effective Choice in the Prisoner’s Dilemma. J. Conflict Resolution 24, 379–403

    Article  Google Scholar 

  5. Axelrod R. (1984) The Evolution of Cooperation, New York: Basic Books

    Google Scholar 

  6. Axelrod R. (1987) The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In: Davis L. (Ed.) Genetic Algorithms and Simulated Annealing. London, U.K.: Pitman, 32–41

    Google Scholar 

  7. Barricelli N. A. (1963) Numerical Testing of Evolution Theories. Part II: Preliminary Tests of Performance, Symbiogenesis and Terrestrial Life. Acta Biotheoretica 16, 99–126

    Article  Google Scholar 

  8. Boyd R., Lorberbaum J. P. (1987) No Pure Strategy is Evolutionarily Stable in the Repeated Prisoner’s Dilemma. Nature 327, 58–59

    Article  Google Scholar 

  9. Carnahan J., Li S.-G., Constantini C., Toure Y. T., Taylor C. E. (1997) Computer Simulation of Dispersal by Anopehles Gambiae s.l. in West Africa. In: Langton C. G., Shimohara K. (Eds.) Artificial Life VI. Cambridge, MA: MIT Press, 387–394

    Google Scholar 

  10. Casti J. L. (1997) Would-Be Worlds, New York: John Wiley

    Google Scholar 

  11. Fogel L. J. (1964) On the Organization of Intellect. Ph.D. Dissertation, UCLA

    Google Scholar 

  12. Fogel L. J., Owens A. J., Walsh M. J. (1966) Artificial Intelligence through Simulated Evolution, New York: John Wiley

    MATH  Google Scholar 

  13. Fogel L. J., Burgin G. H. (1969) Competitive Goal-seeking through Evolutionary Programming. Air Force Cambridge Res. Lab., Contract AF 19(628)-5927

    Google Scholar 

  14. Fogel D. B. (1993) Evolving Behaviors in the Iterated Prisoner’s Dilemma. Evol. Comput. 1(1), 77–97

    Article  MathSciNet  Google Scholar 

  15. Fogel D. B. (1995) On the Relationship Between the Duration of an Encounter and the Evolution of Cooperation in the Iterated Prisoner’s Dilemma. Evol. Comput. 3, 349–363

    Article  MathSciNet  Google Scholar 

  16. Fogel D. B. (Ed.) (1998) Evolutionary Computation: The Fossil Record, Piscataway, NJ: IEEE Press

    MATH  Google Scholar 

  17. Fogel D. B., Chellapilla K., Angeline P. J. (1999) Inductive Reasoning and Bounded Rationality Reconsidered. IEEE Transactions on Evolutionary Computation 3(2), 142–146

    Article  Google Scholar 

  18. Harrald P. G., Fogel D. B. (1996) Evolving Continuous Behaviors in the Iterated Prisoner’s Dilemma. Bio-Systems 37(1–2), 135–145

    Article  Google Scholar 

  19. Hofstadter D. (1985) Metamagical Themas: Questing for the Essence of Mind and Pattern, New York: Basic Books

    Google Scholar 

  20. Hofstadter D. (1995) Fluid Concepts and Creative Analogies. New York: Basic Books, 115

    Google Scholar 

  21. Kreps D., Milgrom P., Roberts J., Wilson J. (1982) Rational Cooperation in the Finitely Repeated Prisoner’s Dilemma. J. Econ. Theory 27, 326–355

    MathSciNet  Google Scholar 

  22. Marks R. E. (1989) Breeding Hybrid Strategies: Optimal Behavior for Oligopolists. In: Schaffer J. D. (Ed.) Proc. 3rd Int. Conf. Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 198–207

    Google Scholar 

  23. Mealy G. H. (1955) A Method of Synthesizing Sequential Circuits. Bell Syst. Tech. J. 34, 1054–1079

    MathSciNet  Google Scholar 

  24. Moore, E. F. (1957) Gedanken-experiments on Sequential Machines: Automata Studies. Ann. Math. Studies 34, 129–153

    Google Scholar 

  25. Palmer R. G., Arthur W. B., Holland J. H., LeBaron B., Tayler P. (1994) Artificial Economic Life: A Simple Model of a Stockmarket. Physica D 75, 264–274

    Article  MATH  Google Scholar 

  26. Rapoport A. (1966) Optimal Policies for the Prisoner’s Dilemma. Univ. North Carolina, Chapel Hill, Tech. Rep., no. 50

    Google Scholar 

  27. Reed J., Toombs R., Barricelli N. A. (1967) Simulation of Biological Evolution and Machine Learning. J. Theoretical Biology 17, 319–342

    Article  Google Scholar 

  28. Rudolph G. (1994) Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans. Neural Networks 5,(1) 96–101

    Article  Google Scholar 

  29. Scodel A., Minas J. S., Ratoosh P., Lipetz M. (1959) Some Descriptive Aspects of Two-person Nonzero Sum Games. J. Conflict Resolution 3, 114–119

    Article  Google Scholar 

  30. Smith J. M. (1982) Evolution and the Theory of Games. Cambridge, U.K.: Cambridge University Press

    Book  MATH  Google Scholar 

  31. Stanley E. A., Ashlock D., Tesfatsion L. (1994) Iterated Prisoner’s Dilemma with Choice and Refusal of Partners. In: Langton C. G. (Ed.) Artificial Life III. Reading, MA: Addison-Wesley, 131–175

    Google Scholar 

  32. Taylor C., Jefferson D. (1995) Artificial Life as a Tool for Biological Inquiry. In: Langton C. (Ed.) Artificial Life: An Overview. Cambridge, MA: MIT Press, 1–13

    Google Scholar 

  33. To T. (1988) More Realism in the Prisoner’s Dilemma. J. Conflict Resolution 32, 402–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fogel, D.B., Chellapilla, K., Angeline, P.J. (2002). Evolutionary Computation and Economic Models: Sensitivity and Unintended Consequences. In: Chen, SH. (eds) Evolutionary Computation in Economics and Finance. Studies in Fuzziness and Soft Computing, vol 100. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1784-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1784-3_14

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2512-1

  • Online ISBN: 978-3-7908-1784-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics