Evolutionary Computation and Economic Models: Sensitivity and Unintended Consequences

  • David B. Fogel
  • Kumar Chellapilla
  • Peter J. Angeline
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 100)


The use of evolutionary models of complex adaptive systems is gaining attention. Such systems can generate surprising and interesting emergent behaviors. The sensitivity of these models, however, is often unknown and is rarely studied. The evidence reported here demonstrates that even small changes to simple models that adopt evolutionary dynamics can engender radically different emergent properties. This gives cause for concern when modeling complex systems, such as stock markets, where the emergent behavior depends on the collective allocation of resources of many purpose-driven agents.


Evolutionary Computation Hide Node Cooperative Behavior Complex Adaptive System State Transition Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeline P. J. (1994) An Alternate Interpretation of the Iterated Prisoner’s Dilemma and the Evolution of Nonmutual Cooperation. In: Brooks R., Maes P. (Eds.) Artificial Life IV. Cambridge, MA: MIT Press, 353–358Google Scholar
  2. 2.
    Arthur W. B. (1994) Inductive Reasoning and Bounded Rationality. Amer. Econ. Assn. Papers Proc. 84, 406–411Google Scholar
  3. 3.
    Axelrod R. (1980a) Effective Choice in the Iterated Prisoner’s Dilemma. J. Conflict Resolution 24, 3–25CrossRefGoogle Scholar
  4. 4.
    Axelrod R. (1980b) More Effective Choice in the Prisoner’s Dilemma. J. Conflict Resolution 24, 379–403CrossRefGoogle Scholar
  5. 5.
    Axelrod R. (1984) The Evolution of Cooperation, New York: Basic BooksGoogle Scholar
  6. 6.
    Axelrod R. (1987) The Evolution of Strategies in the Iterated Prisoner’s Dilemma. In: Davis L. (Ed.) Genetic Algorithms and Simulated Annealing. London, U.K.: Pitman, 32–41Google Scholar
  7. 7.
    Barricelli N. A. (1963) Numerical Testing of Evolution Theories. Part II: Preliminary Tests of Performance, Symbiogenesis and Terrestrial Life. Acta Biotheoretica 16, 99–126CrossRefGoogle Scholar
  8. 8.
    Boyd R., Lorberbaum J. P. (1987) No Pure Strategy is Evolutionarily Stable in the Repeated Prisoner’s Dilemma. Nature 327, 58–59CrossRefGoogle Scholar
  9. 9.
    Carnahan J., Li S.-G., Constantini C., Toure Y. T., Taylor C. E. (1997) Computer Simulation of Dispersal by Anopehles Gambiae s.l. in West Africa. In: Langton C. G., Shimohara K. (Eds.) Artificial Life VI. Cambridge, MA: MIT Press, 387–394Google Scholar
  10. 10.
    Casti J. L. (1997) Would-Be Worlds, New York: John WileyGoogle Scholar
  11. 11.
    Fogel L. J. (1964) On the Organization of Intellect. Ph.D. Dissertation, UCLAGoogle Scholar
  12. 12.
    Fogel L. J., Owens A. J., Walsh M. J. (1966) Artificial Intelligence through Simulated Evolution, New York: John WileyMATHGoogle Scholar
  13. 13.
    Fogel L. J., Burgin G. H. (1969) Competitive Goal-seeking through Evolutionary Programming. Air Force Cambridge Res. Lab., Contract AF 19(628)-5927Google Scholar
  14. 14.
    Fogel D. B. (1993) Evolving Behaviors in the Iterated Prisoner’s Dilemma. Evol. Comput. 1(1), 77–97MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fogel D. B. (1995) On the Relationship Between the Duration of an Encounter and the Evolution of Cooperation in the Iterated Prisoner’s Dilemma. Evol. Comput. 3, 349–363MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fogel D. B. (Ed.) (1998) Evolutionary Computation: The Fossil Record, Piscataway, NJ: IEEE PressMATHGoogle Scholar
  17. 17.
    Fogel D. B., Chellapilla K., Angeline P. J. (1999) Inductive Reasoning and Bounded Rationality Reconsidered. IEEE Transactions on Evolutionary Computation 3(2), 142–146CrossRefGoogle Scholar
  18. 18.
    Harrald P. G., Fogel D. B. (1996) Evolving Continuous Behaviors in the Iterated Prisoner’s Dilemma. Bio-Systems 37(1–2), 135–145CrossRefGoogle Scholar
  19. 19.
    Hofstadter D. (1985) Metamagical Themas: Questing for the Essence of Mind and Pattern, New York: Basic BooksGoogle Scholar
  20. 20.
    Hofstadter D. (1995) Fluid Concepts and Creative Analogies. New York: Basic Books, 115Google Scholar
  21. 21.
    Kreps D., Milgrom P., Roberts J., Wilson J. (1982) Rational Cooperation in the Finitely Repeated Prisoner’s Dilemma. J. Econ. Theory 27, 326–355MathSciNetGoogle Scholar
  22. 22.
    Marks R. E. (1989) Breeding Hybrid Strategies: Optimal Behavior for Oligopolists. In: Schaffer J. D. (Ed.) Proc. 3rd Int. Conf. Genetic Algorithms. San Mateo, CA: Morgan Kaufmann, 198–207Google Scholar
  23. 23.
    Mealy G. H. (1955) A Method of Synthesizing Sequential Circuits. Bell Syst. Tech. J. 34, 1054–1079MathSciNetGoogle Scholar
  24. 24.
    Moore, E. F. (1957) Gedanken-experiments on Sequential Machines: Automata Studies. Ann. Math. Studies 34, 129–153Google Scholar
  25. 25.
    Palmer R. G., Arthur W. B., Holland J. H., LeBaron B., Tayler P. (1994) Artificial Economic Life: A Simple Model of a Stockmarket. Physica D 75, 264–274MATHCrossRefGoogle Scholar
  26. 26.
    Rapoport A. (1966) Optimal Policies for the Prisoner’s Dilemma. Univ. North Carolina, Chapel Hill, Tech. Rep., no. 50Google Scholar
  27. 27.
    Reed J., Toombs R., Barricelli N. A. (1967) Simulation of Biological Evolution and Machine Learning. J. Theoretical Biology 17, 319–342CrossRefGoogle Scholar
  28. 28.
    Rudolph G. (1994) Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans. Neural Networks 5,(1) 96–101CrossRefGoogle Scholar
  29. 29.
    Scodel A., Minas J. S., Ratoosh P., Lipetz M. (1959) Some Descriptive Aspects of Two-person Nonzero Sum Games. J. Conflict Resolution 3, 114–119CrossRefGoogle Scholar
  30. 30.
    Smith J. M. (1982) Evolution and the Theory of Games. Cambridge, U.K.: Cambridge University PressMATHCrossRefGoogle Scholar
  31. 31.
    Stanley E. A., Ashlock D., Tesfatsion L. (1994) Iterated Prisoner’s Dilemma with Choice and Refusal of Partners. In: Langton C. G. (Ed.) Artificial Life III. Reading, MA: Addison-Wesley, 131–175Google Scholar
  32. 32.
    Taylor C., Jefferson D. (1995) Artificial Life as a Tool for Biological Inquiry. In: Langton C. (Ed.) Artificial Life: An Overview. Cambridge, MA: MIT Press, 1–13Google Scholar
  33. 33.
    To T. (1988) More Realism in the Prisoner’s Dilemma. J. Conflict Resolution 32, 402–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • David B. Fogel
    • 1
  • Kumar Chellapilla
    • 2
  • Peter J. Angeline
    • 1
  1. 1.Natural Selection, Inc.USA
  2. 2.Dept. Electrical and Computer EngineeringUniversity of California at San DiegoUSA

Personalised recommendations