A Non-monotone Logic for Reasoning about Action

  • Marek A. Bednarczyk
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 17)


A logic for reasoning about action is presented. The logic is based on the idea that explicit substitutions can be seen as atomic formulae describing basic change of state of a system. The logic is non-monotone, i.e., it does not admit weakening in its presentation as a fragment of non-commutative linear logic. Potential applications of the logic are also discussed in connection to the “Frame Problem”.


Logic Program Logic Programming Linear Logic Frame Problem Axiom Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K., and M. Bezem. Acyclic programs. In D. Warren and P.Szeredi (Eds.), Logic programming: Proc. 7th Int’l Conf., 1990, pp. 617–633.Google Scholar
  2. 2.
    Bednarczyk, M. A. Logic of predicates with explicit substitutions. Mathematical Foundations of Computer Science 1996, 21st Symposium, Cracow, Poland, Proceedings (eds. W. Penczek & A. Szalas), LNCS 1113, 192–206, 1996.Google Scholar
  3. 3.
    Bednarczyk, M. A. and T. Borzyszkowski. Towards program development with Isabelle. Proc. 1st Isabelle User Workshop, pp.101–121, Cambridge, 1995.Google Scholar
  4. 4.
    Bednarczyk, M. A. and T. Borzyszkowski. Information system development as mechanizable logical activity. Information System Development - ISD’96, 5th International Conference, Gdansk, Poland, Proceedings (eds. S. Wrycza & J. Zupancic), 535–544, 1996.Google Scholar
  5. 5.
    Brown, C. and D. Gurr. Relations and non-commutative linear logic. J. of Pure and Applied Algebra, 105, 2, pp.: 117–136, 1995.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brown, F., (Ed) Proc., of the 1987 Workshop The Frame Problem in Artificial Intelligence. Morgan Kaufmann Publishers, 1987.Google Scholar
  7. 7.
    Dijkstra, E. W. A Discipline of Programming. Prentice-Hall, 1990.Google Scholar
  8. 8.
    Dijkstra, E. W. and C.S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag, 1990.Google Scholar
  9. 9.
    Eshghi, K., and R. Kowalski. Abduction compared with negation as failure. In G. Levi and M. Martelli (Eds.) Logic programming: Proc. 6th Int’l Conf., 1989, pp. 234–255.Google Scholar
  10. 10.
    Giunchiglia, E., Neelakantan Kartha, G. and V. Lifschitz. Reprezenting action: indeterminacy and ramifications. submitted, (1997).Google Scholar
  11. 11.
    Gelfond, M. and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9 (1991), pp 365–385.CrossRefGoogle Scholar
  12. 12.
    Gelfond, M. and V. Lifschitz. Reprezenting actions and change by logic programs. Journal of Logic Programming, 17 (1993), pp 301–322.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Girard, J.-Y. Linear logic. Theoretical Computer Science, 50 (1987), pp 1–102.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Girard, J.-Y., Lafont, Y. and P. Taylor. Proofs and Types. volume 7 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1989.Google Scholar
  15. 15.
    Girard, J.-Y. Linear logic: its syntax and semantics. In Advances of Linear Logic, 1995.Google Scholar
  16. 16.
    Hanks, S., and D. McDermott. Nonmonotonic logic and temporal projection. Artificial Intelligence,33(3) (1987) pp.:379–412.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hoare, C. A. R. An axiomatic basis for computer programming. Communications of the ACM, 12, (1969).Google Scholar
  18. 18.
    Lambek, J. The mathematics of sentence structure. American Mathematical Monthly,1958, vol. 65, pp.:363–386.Google Scholar
  19. 19.
    Lukaszewicz, W. and E. Madalinska-Bugaj. Reasoning about Action and Change Using Dijkstra’s Semantics for Programming Languages: Preliminary Report. In: Proc. IJCAI-95,Montreal, Canada, 1995, pp.:1950–1955.Google Scholar
  20. 20.
    Lukaszewicz, W. and E. Madalinska-Bugaj. Reasoning about Action and Change: Actions with Abnormal Effects. In: KI-95, Adv. in AI, Proc. 19th German AI Conference,Springer-Verlag, LNAI, 981, 1995, pp.:209–220.Google Scholar
  21. 21.
    McCarthy, J., and P.H. Hayes. Some philosophical problems from the standpoint of Artificial Inteligence. B. Meltzer and D. Mitchie (Eds.), Machine Intelligence 4, (1969) pp.:463–502.Google Scholar
  22. 22.
    Poigné, A. Basic Category Theory. In Handbook of Logic in Computer Science. Vol I.. Clarendon Press, Oxford, 1992.Google Scholar
  23. 23.
    Przymusinski, T. Extended stable semantics for normal and disjunctive programs. In D. Warren and P.Szeredi (Eds.), Logic programming: Proc. 7th Int’l Conf., 1990, pp. 459–477.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Marek A. Bednarczyk
    • 1
  1. 1.Instytut Podstaw Informatyki PANGdańskPoland

Personalised recommendations