Advertisement

Rough Sets pp 95-120 | Cite as

The Sentential Calculus

  • Lech Polkowski
Part of the Advances in Soft Computing book series (AINSC, volume 15)

Abstract

We begin with a discussion of the basic tool of mathematical reasoning: the sentential calculus (or, calculus of propositions, propositional calculus, propositional logic). By a proposition, sentence we mean any statement about reality of interest to us whose truth value can be established with certainty. By a truth value of a proposition, we understand either of two possible values: truth (T or 1), falsity (F or 0). A proposition p may be therefore either true or false and only one of the two possibilities actually holds for p. For instance, the statement “if today is Monday then tomorrow is Tuesday” is according to our best knowledge true while the statement of ordinary arithmetic “ 2+2 = 3” is false. In the sequel, we denote truth values with the symbols 0, 1.

Keywords

Boolean Function Inference Rule Propositional Calculus Sequent Approach Deductive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Works quoted

  1. [Bernays26]
    P. Bernays, Axiomatische Untersuchung den Aussagenkalkiils der “Principia Mathematica”, Mathematische Zeitschrift, 25 (1926).Google Scholar
  2. [Frege874]
    G. Frege, Begriffsschrift, eine der mathematischen nachgebildete Formelsprache des Reinen Denkens, Halle, 1874.Google Scholar
  3. [Gentzen34]
    G. Gentzen, Untersuchungen über das logische Schliessen. I, II., Mathematische Zeitschrift 39 (1934–5), pp. 176–210, 405–431.Google Scholar
  4. [Herbrand30]
    J. Herbrand, Recherches sur la theôrie de la démonstration, Travaux de la Soc.Sci. Lettr. de Varsovie, III, 33 (1930), pp. 33–160.Google Scholar
  5. [Kalmár34]
    L. Kalmár, Über die Axiomatisierbarkeit des Aussagenkalküls,Acta Scientiarum Mathematicarum, 7 (1934–5), pp.222–243.Google Scholar
  6. [Kanger57]
    S. Kanger, Provability in Logic,Acta Universitatis Stockholmiensis, Stockholm Studies in Philosophy I, 1957. in: Jan Łukasiewicz. Selected Works, L. Borkowski (ed.), North Holland — Polish Scientific Publishers, Amsterdam — Warsaw, 1970, pp. 197–217].Google Scholar
  7. [Łukasiewicz70]
    J. Łukasiewicz, On the history of the logic of propositions, in: Jan Łukasiewicz. Selected Works, L. Borowski (ed.), North Holland — Polish Scientific Publishers, Amsterdam — Warsaw, 1970, pp. 197–217].Google Scholar
  8. [Łukasiewicz63]
    J. Łukasiewicz, Elements of Mathematical Logic, Pergamon Press — Polish Scientific Publishers, Oxford — Warsaw, 1963.Google Scholar
  9. [Post21]
    E. Post, Introduction to a general theory of elementary propositions, Amer. J. Math., 43 (1921), 163–185.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceUniversity of Wormia and MazuryOlsztynPoland

Personalised recommendations