Advertisement

Rough Sets pp 299-330 | Cite as

Independence, Approximation

  • Lech Polkowski
Part of the Advances in Soft Computing book series (AINSC, volume 15)

Abstract

In this Chapter, we address rough sets from the set—theoretic point of view. Given an information system A = (U, A), a family {IND B :BA} of indiscernibility relations can be generated, the relation IND B defined as follows
$$ IN{D_B}(x,y) \Leftrightarrow \forall \alpha \in B(\alpha (x) = \alpha (y)).$$

Keywords

Boolean Algebra Closure Operator Intuitionistic Logic Approximation Space Partial Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Works quoted

  1. [Bazan00]
    J. Bazan, H.S. Nguyen, S. H. Nguyen, P. Synak, and J. Wróblewski, Rough set algorithms in classification problems,in: [Polkowski—TsumotoLin], pp. 49–88.Google Scholar
  2. [Buszkowski–Orłowska86]
    W. Buszkowski and E. Orłowska, On the logic of database dependencies, Bull. Polish Acad. Sci. Math., 34(1986), pp. 345–354.Google Scholar
  3. [Glazek79]
    K. Glazek, Some old and new problems of independence in mathematics, Coll. Math., 17 (1979), pp. 127–189.MathSciNetGoogle Scholar
  4. [Grzymala—Busse86]
    J. Grzymala—Busse, On the reduction of knowledge representation systems, in: Proceedings of the 6th Intern. Workshop on Expert Systems and Appl., Avignon, Workshop on Expert Systems and Appl., 1986, vol. 1, pp. 463–478.Google Scholar
  5. [Luxenburger98] M. Luxenburger, Dependencies between many—valued attributes, in: [Orłowska 98], pp. 316–346.Google Scholar
  6. [Marczewski58]
    E. Marczewski, A general scheme of independence in mathematics, Bull. Polish Acad. Math. Sci., 6 (1958), pp. 731–736.MathSciNetMATHGoogle Scholar
  7. [Novotnÿ—Pawlak85]
    M. Novotnÿ and Z. Pawlak, Black box analysis and rough top equality, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 105–113.MathSciNetMATHGoogle Scholar
  8. [Novotnÿ98a]
    M. Novotnÿ, Dependence spaces of information systems,in [Orlow-ska98], pp. 193–246.Google Scholar
  9. [Novotnÿ98b]
    M. Novotnÿ, Applications of dependence spaces,in [Orłowska98], pp. 247–289.Google Scholar
  10. [Novotnÿ83]
    M. Novotnÿ, Remarks on sequents defined by means of information systems, Fund. Inform., 6 (1983), pp. 71–79.MATHGoogle Scholar
  11. [Novotnÿ—Pawlak92]
    M. Novotnÿ and Z. Pawlak, On a problem concerning dependence spaces, Fund. Inform., 16 (1992), pp. 275–287.MATHGoogle Scholar
  12. [Novotnÿ—Pawlak91]
    M. Novotnÿ and Z. Pawlak, Algebraic theory of independence in information systems, Fund. Inform., 14 (1991), pp. 454–476.MATHGoogle Scholar
  13. [Novotnÿ—Pawlak90]
    M. Novotnÿ and Z. Pawlak, On superreducts, Bull. Polish Acad. Sci. Tech., 38 (1990), pp. 101–112.MATHGoogle Scholar
  14. [Novotnÿ—Pawlak89]
    M. Novotnÿ and Z. Pawlak, Algebraic theory of independence in information systems, Report 51, Institute of Mathematics of the Czechoslovak Academy of Sciences, 1989.Google Scholar
  15. [Novotnÿ—Pawlak88a]
    M. Novotnÿ and Z. Pawlak, Partial dependency of attributes, Bull. Polish Acad. Sci. Math., 36 (1988), pp. 453–458.MathSciNetMATHGoogle Scholar
  16. [Novotnÿ—Pawlak88b]
    M. Novotnÿ and Z. Pawlak, Independence of attributes, Bull. Polish Acad. Sci. Math., 36 (1988), pp. 459–465.MathSciNetMATHGoogle Scholar
  17. [Novotnÿ—Pawlak87]
    M. Novotnÿ and Z. Pawlak, Concept forming and black boxes, Bull. Polish Acad. Sci. Math., 35 (1987), pp. 133–141.MathSciNetMATHGoogle Scholar
  18. [Novotnÿ—Pawlak85a]
    M. Novotnÿ and Z. Pawlak, Characterization of rough top equalities and rough bottom equalities, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 91–97.MathSciNetMATHGoogle Scholar
  19. [Novotnÿ—Pawlak85b]
    M. Novotnÿ and Z. Pawlak, On rough equalities, Bull. Polish Acad. Sci.Math., 33 (1985), pp. 99–104.MathSciNetMATHGoogle Scholar
  20. [Novotnÿ-Pawlak85d]
    M. Novotnÿ and Z. Pawlak, Independence of attributes, Bull. Polish Acad. Sci. Tech., 33 (1985), pp. 459–465.Google Scholar
  21. [Novotnÿ-Pawlak83]
    M. Novotnÿ and Z. Pawlak, On a representation of rough sets by means of information systems, Fund. Inform., 6 (1983), pp. 289–296.MATHGoogle Scholar
  22. [Orłowska98]
    E. Orłowska, ed., Incomplete Information: Rough Set Analysis, Studies in Fuzzines and Soft Computing vol. 13, Physica Verlag, Heidelberg, 1998.Google Scholar
  23. [Orłowska83]
    E. Orłowska, Dependencies of attributes in Pawlak’s information systems, Fund. Inform., 6 (1983), pp. 247–256.MATHGoogle Scholar
  24. [Pawlak9l]
    Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1991.MATHGoogle Scholar
  25. [Pawlak85a]
    Z. Pawlak, On rough dependency of attributes in information systems, Bull. Polish Acad. Sci., Tech., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar
  26. [Pawlak83]
    Z. Pawlak, Rough classification, Reports of the Computing Centre of the Polish Academy of Sciences, 506, Warsaw, 1983.Google Scholar
  27. [Pawlak82a]
    Z. Pawlak, Rough sets, Intern. J. Information and Computer Science, 11 (1982), pp. 341–356.MathSciNetMATHCrossRefGoogle Scholar
  28. [Pawlak8l1]
    Pawlak8l1 Z. Pawlak, Information Systems-Theoretical Foundations (in Polish), PWN-Polish Scientific Publishers, Warsaw, 1981.Google Scholar
  29. [Pawlak81’]
    Z. Pawlak, Information system theoretical foundations, Inform. Systems, 6 (1981), pp. 205–218.MATHCrossRefGoogle Scholar
  30. [Pawlak-Rauszer85]
    Z. Pawlak and C. Rauszer, Dependency of attributes in information systems, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar
  31. [Pawlak-Skowron94]
    Z. Pawlak and A. Skowron, Rough membership func- tions, in: R.R. Yaeger, M. Fedrizzi, and J. Kacprzyk, eds., Advances in the Dempster-Schafer Theory of Evidence, Wiley, New York, 1994, pp. 251–271.Google Scholar
  32. [Polkowski-Tsumoto-Lin00]
    L. Polkowski, S. Tsumoto, and T. Y. Lin, eds., Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, Studies in Fuzzines and Soft Computing vol. 56, Physica Verlag, Heidelberg, 2000.Google Scholar
  33. [Rauszer9l]
    C. M. Rauszer, Reducts in information systems, Fund. Inform., 15 (1991), pp. 1–12.MathSciNetMATHGoogle Scholar
  34. [Rauszer88]
    C. M. Rauszer, Algebraic properties of functional dependencies, Bull. Polish Acad. Sci. Math., 36 (1988), pp. 561–569.MathSciNetGoogle Scholar
  35. [Rauszer87]
    C. M. Rauszer, Algebraic and logical description of functional and multi—valued dependencies, Proceedings ISMIS’87, Charlotte, NC, North Holland, Amsterdam, 1987, pp. 145–155.Google Scholar
  36. [Rauszer85]
    C. M. Rauszer, Dependency of attributes in information systems, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar
  37. [Rauszer85b]
    C. M. Rauszer, An equivalence between theory of functional dependencies and a fragment of intuitionistic logic, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 571–579.MathSciNetMATHGoogle Scholar
  38. [Rauszer84]
    C. M. Rauszer, An equivalence between indiscernibility relations in information systems and a fragment of intuitionistic logic, in: Lecture Notes in Computer Science, vol. 208, Springer Verlag, Berlin, 1984, pp. 298–317.Google Scholar
  39. [Skowron—Rauszer92]
    A. Skowron and C. M. Rauszer, The discernibility matrices and functions in information systems, in: R. Slowinski, ed., Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, Kluwer, Dordrecht, 1992, pp. 311–362.Google Scholar
  40. [Stepaniuk00]
    J. Stepaniuk, Knowledge discovery by application of rough set model, in: [Polkowski—Tsumoto—Lin00], pp. 137–236.Google Scholar
  41. [Ślęzak00]
    D. Ślęzak, Various approaches to reasoning with frequency based decision reducts, in: [Polkowski—Tsumoto—Lin00], pp. 235–288.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceUniversity of Wormia and MazuryOlsztynPoland

Personalised recommendations