Advertisement

Rough Set Theory: An Introduction

  • Lech Polkowski
Part of the Advances in Soft Computing book series (AINSC, volume 15)

Abstract

In rough set theory, knowledge is interpreted as an ability to classify some objects (cf. [Pawlak82a, 81b]). These objects form a set called often a universe of discourse and their nature may vary from case to case: they may be e.g. medical patients, processes, participants in a conflict etc., etc.

Keywords

Soft Computing Decision Table Information Granule Granular Computing Discernibility Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Works quoted

  1. [Bazan00]
    J. Bazan, H.S. Nguyen, S. H. Nguyen, P. Synak, and J. Wróblewski, Rough set algorithms in classification problems,in: [Polkowski—TsumotoLin], pp. 49–88.Google Scholar
  2. [Bazan98]
    J.G. Bazan, Nguyen Hung Son, Nguyen Tuan Trung, A. Skowron, and J. Stepaniuk, Decision rules synthesis for object classification,in: [Orlowska98], pp. 23–57.Google Scholar
  3. [Goldberg89]
    D.E. Goldberg, GA in Search, Optimisation, and Machine Learning, Addison—Wesley, 1989.Google Scholar
  4. [Greco99]
    S. Greco, B. Matarazzo, R. Słowiński, Fuzzy dominance as basis for rough approximations, in: Proceedings: the 4th Meeting of the EURO WG on Fuzzy Sets and 2nd Internat. Conf. on Soft and Intelligent Computing, (EUROFUSE-SIC’99), Budapest, Hungary, May 1999, pp. 273–278.Google Scholar
  5. [Greco98]
    S. Greco, B. Matarazzo, and R. Słowiński, On joint use of indiscernibility, similarity and dominance in rough approximation of decision classes, in: Proceedings: the 5th International Conference of the Decision Sciences Institute, Athens, Greece, July 1999, pp. 1380–1382.Google Scholar
  6. [Iwinski87]
    T. B. Iwiński, Algebraic approach to rough sets, Bull. Polish Acad. Ser. Sci. Math., 35 (1987), pp. 673–683.Google Scholar
  7. [Mitchell98]
    T. Mitchell, Machine Learning, McGraw—Hill, Boston, 1998.Google Scholar
  8. [Nguyen Hung Son98]
    Nguyen Hung Son, From optimal hyperplanes to optimal decision trees, Fundamenta Informaticae, 34 (1–2) (1998), pp. 145–174.Google Scholar
  9. [Orlowska90]
    E. Orlowska, Kripke semantics for knowledge representation, Studia Logica, 49 (1990), pp. 255–272.MathSciNetMATHCrossRefGoogle Scholar
  10. [Nguyen—Nguyen98a]
    Nguyen Sinh Hoa and Nguyen Hung Son,Pattern extraction from data, Fundamenta Informaticae, 34 (1–2) (1998), pp. 129–144.MathSciNetMATHGoogle Scholar
  11. [Nguyen—Nguyen98b]
    Nguyen Hung Son and Nguyen Sinh Hoa, Discretization methods in Data Mining, in: [Polkowski—Skowron98a], pp. 451–482.Google Scholar
  12. [Nguyen—Nguyen98b]
    Nguyen Sinh Hoa, Regularity analysis and its applications in Data Mining, in: [Polkowski—Tsumoto—Lin], pp. 289–378.Google Scholar
  13. [Nguyen—Skowron99]
    Nguyen Hung Son and A. Skowron, Boolean reasoning scheme with some applications in Data Mining, in: Proceedings: Principles of Data Mining and Knowledge Discovery PKDD’99, Prague, Czech Republic, September 1999, LNAI vol. 1704, Springer Verlag, Berlin, 1999, pp. 107–115.Google Scholar
  14. [Novotnÿ—Pawlak89]
    M. Novotnÿ and Z. Pawlak, Algebraic theory of independence in information systems, Report 51, Institute of Mathematics of the Czechoslovak Academy of Sciences, 1989.Google Scholar
  15. [Novotnÿ—Pawlak881]
    M. Novotnÿ and Z. Pawlak, Partial dependency of attributes, Bull. Polish Acad. Sci. Math., 36 (1989), pp. 453–458.Google Scholar
  16. [Novotnÿ—Pawlak85a]
    M. Novotnÿ and Z. Pawlak, Characterization of rough top equalities and rough bottom equalities, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 91–97.MathSciNetMATHGoogle Scholar
  17. [Novotn3’7—Pawlak85b]
    M. Novotnÿ and Z. Pawlak, On rough equalities, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 99–104.MathSciNetMATHGoogle Scholar
  18. [Novotn3’r—Pawlak85c]
    M. Novotnÿ and Z. Pawlak, Black box analysis and rough top equality, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 105–113.MathSciNetMATHGoogle Scholar
  19. [Novotnÿ—Pawlak85a]
    M. Novotnÿ and Z. Pawlak,Independence of attributes, Bull. Polish Acad. Sci. Tech., 33 (1985), pp. 459–465.Google Scholar
  20. [Obtulowicz85]
    A. Obtulowicz, Rough sets and Heyting algebra valued sets, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 454–476.Google Scholar
  21. [Orlowska89]
    E. Orlowska, Logic for reasoning about knowledge, Z. Math. Logik u. Grund. d. Math., 35 (1989), pp. 559–572.MathSciNetMATHCrossRefGoogle Scholar
  22. [Orlowska85]
    E. Orlowska, Logic approach to information systems, Fundamenta Informaticae, 8 (1985), pp. 359–378.MathSciNetMATHGoogle Scholar
  23. [Orlowska84]
    E. Orlowska, Modal logics in the theory of information systems, Z. Math. Logik u. Grund.d. Math., 30 (1984), pp. 213–222.MathSciNetMATHCrossRefGoogle Scholar
  24. [Orlowska-Pawlak84a]
    E. Orlowska and Z. Pawlak, Logical foundations of knowledge representation, Reports of the Comp. Centre of the Polish Academy of Sciences, 537, 1984.Google Scholar
  25. [Orlowska-Pawlak841 ]
    E. Orlowska and Z. Pawlak, Representation of non-deterministic information, Theor. Computer Science, 29 (1984), pp. 27–39.Google Scholar
  26. [Pagliani98a]
    P. Pagliani, Rough set theory and logic-algebraic structures, in: [Orlowska98], pp. 109–192.Google Scholar
  27. [Pawlak0l]
    Z. Pawlak, Combining rough sets and Bayes’ rule, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 401–408.Google Scholar
  28. [Pawlak82a]
    Z. Pawlak, Rough sets, Intern. J. Comp. Inform. Sci., 11 (1982), pp. 341–356.MathSciNetMATHCrossRefGoogle Scholar
  29. [Pawlak9l]
    Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1991.MATHGoogle Scholar
  30. [Pawlak87a]
    Z. Pawlak, Decision tables-a rough set approach, Bull. EATCS, 33 (1987), pp. 85–96.MATHGoogle Scholar
  31. [Pawlak87b]
    Z. Pawlak, Rough logic, Bull. Polish Acad. Sci. Tech., 35 (1987), pp. 253–258.MathSciNetMATHGoogle Scholar
  32. [Pawlak86]
    Z. Pawlak, On decision tables, Bull. Polish Acad. Sci. Tech., 34 (1986), pp. 553–572.Google Scholar
  33. [Pawlak851.
    Z. Pawlak, On rough dependency of attributes in information systems, Bull. Polish Acad. Sci. Tech., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar
  34. [Pawlak851.
    Z. Pawlak, Rough sets and decision tables, LNCS vol. 208, Springer Verlag, Berlin, 1985, pp. 186–196.Google Scholar
  35. [Pawlak8la]
    Z. Pawlak, Information Systems—Theoretical Foundations (in Polish), PWN—Polish Scientific Publishers, Warsaw, 1981.Google Scholar
  36. [Pawlak81b]
    Z. Pawlak, Information systems-theoretical foundations, Information Systems, 6 (1981), pp. 205–218.MATHCrossRefGoogle Scholar
  37. [Pawlak-Rauszer85]
    Z. Pawlak and C. Rauszer, Dependency of attributes in information systems, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar
  38. [Pomykala88]
    J. Pomykala and J. A. Pomykala, The Stone algebra of roughGoogle Scholar
  39. [Pawlak-Skowron94]
    Z. Pawlak and A. Skowron, Rough membership func- tions, in: R.R. Yaeger, M. Fedrizzi, and J. Kacprzyk, eds., Advances in the Dempster-Schafer Theory of Evidence, Wiley, New York, 1994, pp. 251–271.Google Scholar
  40. [Polkowski93a]
    L. Polkowski, Metric spaces of topological rough sets from countable knowledge bases, Foundations of Computing and Decision Sciences, 18 (1993), pp. 293–306.MathSciNetMATHGoogle Scholar
  41. [Polkowski93b]
    L. Polkowski, Mathematical morphology of rough sets, Bull. Polish Acad. Sci. Math., 41 (1993), pp. 241–273.MathSciNetMATHGoogle Scholar
  42. [Polkowski-Polkowski00]
    L. Polkowski and M. Semeniuk-Polkowska, Towards usage of natural language in approximate computation: a granular semantics employing formal languages over mereological granules of knowledge, Scheda Informaticae (Sci. Fasc. Jagiellonian University), 10 (2000), pp. 131–146.Google Scholar
  43. [Polkowski-Skowron0l]
    L. Polkowski and A. Skowron, Rough mereological calculi of granules: a rough set approach to computation, Computational Intelligence: An Intern. Journal, 17 (2001), pp. 472–492.MathSciNetGoogle Scholar
  44. [Polkowski-Skowron98a]
    L. Polkowski and A. Skowron, Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica Verlag, Heidelberg, 1998.CrossRefGoogle Scholar
  45. [Polkowski-Skowron9811 ]
    L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Studies in Fuzziness and Soft Computing, vol. 19, Physica Verlag, Heidelberg, 1998.Google Scholar
  46. [Polkowski-Tsumoto-Lin00]
    L. Polkowski, S. Tsumoto, and T. Y. Lin,Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, Studies in Fuzzines and Soft Computing vol. 56, Physica Verlag, Heidelberg, 2000.sets, Bull. Polish Acad. Ser. Sci. Math., 36 (1988), 495–508.Google Scholar
  47. [Rasiowa—Skowron86a]
    H. Rasiowa and A. Skowron, Rough concept logic, LNCS vol. 208, Springer Verlag, Berlin, 1986, pp. 288–297.Google Scholar
  48. [Rasiowa—Skowron86b]
    H. Rasiowa and A. Skowron, The first step towards an approximation logic, J. Symbolic Logic, 51 (1986), p. 509.Google Scholar
  49. [Rasiowa—Skowron86`]
    H. Rasiowa and A. Skowron, Approximation logic, Proc. Conf. on Mathematical Methods of Specification and Synthesis of Software Systems, Akademie Verlag, Berlin, 1986, pp. 123–139.CrossRefGoogle Scholar
  50. [Rissanen83]
    J. Rissanen, A universal prior for integers and estimation by minimum description length, The Annals of Statistics, 11 (1983), pp. 416431.Google Scholar
  51. [Skowron89]
    A. Skowron, The implementation of algorithms based on discernibility matrix, manuscript, 1989.Google Scholar
  52. [Skowron88]
    A. Skowron, On topology in information systems, Bull. Polish Acad. Sci. Math., 36 (1988), pp. 477–480.MathSciNetMATHGoogle Scholar
  53. [Skowron—Rauszer92]
    A. Skowron and C. Rauszer, The discernibility matrices and functions in information systems, in: R. Słowiński, ed., Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, Kluwer, Dordrecht, 1992, pp. 311–362.Google Scholar
  54. [Skowron—Stepaniuk96]
    A. Skowron and J. Stepaniuk, Tolerance approximation spaces, Fundamenta Informaticae, 27 (1996), pp. 245–253.MathSciNetMATHGoogle Scholar
  55. [Słowiński0x]
    R. Słowiński and D. Vanderpooten, A generalized definition of rough approximations based on similarity, IEEE Transactions on Data and Knowledge Engineering, to appear.Google Scholar
  56. [Stepaniuk00]
    J. Stepaniuk, Knowledge discovery by application of rough set model, in: [Polkowski—Tsumoto—Lin00], pp. 137–234.Google Scholar
  57. [Slgzak00]
    D. Slgzak, Various approaches to reasoning with frequency based decision redacts: a survey, in: [Polkowski—Tsumoto—Lin00], pp. 235–288.Google Scholar
  58. [Vakarelov89]
    D. Vakarelov, Modal logics for knowledge representation systems, Lecture Notes in Computer Science, vol. 363 (1989), Springer Verlag, Berlin, pp. 257–277.Google Scholar

[A] Books and conference proceedings

  1. 1.
    S. K. Pal, L. Polkowski and A. Skowron (eds.), Rough—Neuro Computing: Techniques for Computing with Words, Springer-Verlag, 2002, to appear.Google Scholar
  2. 2.
    L. Polkowski, S. Tsumoto and T. Y. Lin (eds.), Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, this Series, vol. 56, Physica—Verlag, Heidelberg, 2001.Google Scholar
  3. 3.
    S. K. Pal and A. Skowron (eds.),Rough Fuzzy Hybridization: A New Trend in Decision—Making, Springer—Verlag, Singapore, 1999.Google Scholar
  4. 4.
    L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, this Series, vol. 18, PhysicaVerlag, Heidelberg, 1998.Google Scholar
  5. 5.
    L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, this Series, vol. 19, Physica—Verlag, Heidelberg, 1998.Google Scholar
  6. 6.
    T. Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Dordrecht, 1997.MATHGoogle Scholar
  7. 7.
    S. Hirano, M. Inuiguchi, and S. Tsumoto (eds.), Proceedings of the Int. Workshop on Rough Set Theory and Granular Computing RSTGC’2001, Bull. Intern. Rough Set Society, 5 (2001); also Lecture Notes in AI, vol. 2253, Springer-Verlag, Berlin, 2002.Google Scholar
  8. 8.
    W. Ziarko and Y. Y. Yao (eds.), Proceedings of 2nd International Conference on Rough Sets and Current Trends in Computing RSCTC’2000, Technical Report CS-2000–07, University of Regina, Regina, Canada, 2001; also Lecture Notes in AI, vol. 2205, Springer - Verlag, Berlin, 2001.Google Scholar
  9. 9.
    N. Zhong, A. Skowron, and S. Ohsuga (eds.), New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, Proceedings: the 7th International Workshop (RSFDGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999.Google Scholar
  10. 10.
    L. Polkowski and A. Skowron (eds.), Rough Sets and Current Trends in Computing, Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998.Google Scholar

[B] Journal and monograph articles, and conference papers

  1. 1.
    P. Apostoli and A. Kanda, Parts of the Continuum: Towards a modern ontology of science, to appear in: Poznan Series on the Philosophy of Science and the Humanities.Google Scholar
  2. 2.
    G. Arora, F. Petry, and T. Beaubouef, New information measures for fuzzy sets, in: Proceeings: the 7th IFSA World Congress, Prague, the Czech Republic, June 1997.Google Scholar
  3. 3.
    G. Arora, F. Petry, and T. Beaubouef, Information measure of type ß under similarity relations, in: Proceedings: the 6th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’97), Barcelona, Spain, July 1997.Google Scholar
  4. 4.
    C. Baizân, E. Menasalvas, J. Pena, A new approach to efficient calculation of reducts in large databases, in: Proceedings: the 5th International Workshop on Rough Sets and Soft Computing (RSSC’97) at Proceedings: the 3rd Joint Conference on Information Sciences (JCIS’97), Research Triangle Park NC, March 1997, pp. 340–344.Google Scholar
  5. 5.
    C. Baizân, E. Menasalvas, J. Pena, Using rough sets to mine socioeconomic data, in: Proceedings: SMC’97, 1997, pp. 567–571.Google Scholar
  6. 6.
    C. Baizân, E. Menasalvas, J. Pena, S. Milldn, and E. Mesa, Rough dependencies as a particular case of correlation: Application to the calculation of approximate reducts, in: Proceedings: Principles of Data Mining and Knowledge Discovery (PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer-Verlag, Berlin, 1999, pp. 335341.Google Scholar
  7. 7.
    C. Baizân, E. Menasalvas, J. Pena, and J. Pastrana, Integrating KDD algorithms and RDBMS code, in: Proceedings: First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 210–214.Google Scholar
  8. 8.
    C. Baizân, E. Menasalvas, J. Pena, and J. Pastrana, RSDM system, Bull. Intern. Rough Set Society, 2, 1998, pp. 21–24.Google Scholar
  9. 9.
    C. Baizân, E. Menasalvas, J. Pena, C. P. Peréz and E. Santos, The lattices of generalizations in a KDD process, in: Proceedings: Cybernetics and Systems’98, 1998, pp. 181–184.Google Scholar
  10. 10.
    C. Baizân, E. Menasalvas, and A. Wasilewska, A model for RSDM Implementation, in: Proceedings: the First international Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 186196.Google Scholar
  11. 11.
    M. Banerjee, S. Mitra, and S.K. Pal, Rough Fuzzy MLP: Knowledge encoding and classification, IEEE Trans. Neural Networks 9 (6), 1998, pp. 1203–1216.CrossRefGoogle Scholar
  12. 12.
    M. Banerjee and S.K. Pal, Roughness of a fuzzy set, Information Science 93 (3/4), 1996, pp. 235–246.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    W. Bartol, X. Caicedo, and F. Rosselld, Syntactical content of finite approximations of partial algebras, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 408–415.Google Scholar
  14. 14.
    J.G. Bazan, Approximate reasoning in decision rule synthesis, in: Proceedings of the Workshop on Robotics, Intelligent Control and Decision Support Systems, Polish—Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 10–15.Google Scholar
  15. 15.
    J.G. Bazan, Discovery of decision rules by matching new objects against data tables, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC-98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 521528.Google Scholar
  16. 16.
    J.G. Bazan, A comparison of dynamic and non—dynamic rough set methods for extracting laws from decision table, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 321–365.Google Scholar
  17. 17.
    J. G. Bazan, Approximate reasoning methods for synthesis of decision algorithms (in Polish), Ph.D. Dissertation, supervisor A. Skowron, Warsaw University, 1998, pp. 1–179.Google Scholar
  18. 18.
    J.G. Bazan, Nguyen Hung Son, Nguyen Tuan Trung, A. Skowron, and J. Stepaniuk, Decision rules synthesis for object classification, in: E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, PhysicaVerlag, Heidelberg, 1998, pp. 23–57.CrossRefGoogle Scholar
  19. 19.
    T. Beaubouef and R. Lang, Rough set techniques for uncertainty management in automated story generation, in: the 36th Annual ACM Southeast Conference, Marietta GA, April 1998.Google Scholar
  20. 20.
    T. Beaubouef, F. Petry, and G. Arora, Information measures for rough and fuzzy sets and application to uncertainty in relational databases, in: S. Pal and A. Skowron (eds.), Rough-Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1998, pp. 200214.Google Scholar
  21. 21.
    T. Beaubouef, F. Petry, and G. Arora, Information—theoretic measures of uncertainty for rough sets and rough relational databases, Information Sciences109 (1–4), 1998, pp. 185–195.CrossRefGoogle Scholar
  22. 22.
    T. Beaubouef, F. Petry, and G. Arora, Information—theoretic measures of uncertainty for rough sets and rough relational databases, in: Proceedings: the 5th International Workshop on Rough Sets and Soft Computing(RSSC’97), Research Triangle Park NC, March 1997.Google Scholar
  23. 23.
    T. Beaubouef, F. Petry, and J. Breckenridge, Rough set based uncertainty management for spatial databases and Geographical Information Systems, in: Proceedings: Fourth On—line World Conference on Soft Computing in Industrial Applications (WSC4), September 1999, pp. 21–30.Google Scholar
  24. 24.
    Chien—Chung Chan, Distributed incremental Data Mining fron very large databases: a rough multi—set approach, in: Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Cybernetics and Informatics, July 2001, vol. VII, pp. 517–522.Google Scholar
  25. 25.
    Chien-Chung Chan and J. W. Grzymala—Busse, On the lower boundaries in learning rules from examples, in: E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, Physica—Verlag, Heidelberg, 1998, pp. 58–74.CrossRefGoogle Scholar
  26. 26.
    I. V. Chikalov, On average time complexity of decision trees and branching programs,Fundamenta Informaticae39 (4), 1999, pp. 337–357.MathSciNetMATHGoogle Scholar
  27. 27.
    I. V. Chikalov, On decision trees with minimal average depth, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 506–512.CrossRefGoogle Scholar
  28. 28.
    I. V. Chikalov, Bounds on average weighted depth of decision trees depending only on entropy, in: Proceedings: the 7th International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems, La Sorbonne, Paris, France, July 1998, pp. 1190–1194.Google Scholar
  29. 29.
    B. Chlebus and Nguyen Sinh Hoa, On finding optimal discretization on two attributes, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 537544.Google Scholar
  30. 30.
    Vhunnian Liu and Ning Zhong, Rough problem settings for ILP dealing with imperfect data, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 446–459.Google Scholar
  31. 31.
    A. Czyzewski, Soft Processing of Audio Signals, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 147–165.CrossRefGoogle Scholar
  32. 32.
    A. Czyzewski, Speaker–independent recognition of isolated words using rough sets, J. Information Sciences 104, 1998, pp. 3–14.CrossRefGoogle Scholar
  33. 33.
    A. Czyzewski, Learning algorithms for audio signal enhancement. Part 2: Implementation of the rough set method for the removal of hiss, J. Audio Eng. Soc. 45 (11), 1997, pp. 931–943.Google Scholar
  34. 34.
    A. Czyzewski, Speaker-independent recognition of digits–experiments with neural networks, fuzzy logic and rough sets, J. Intelligent Automation and Soft Computing2 (2), 1996, pp. 133–146.Google Scholar
  35. 35.
    A. Czyzewski and B. Kostek, Tuning the perceptual noise reduction algorithm using rough sets, in: Proceedings: the First international Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 467–474.Google Scholar
  36. 36.
    A. Czyzewski and B. Kostek, Rough set-based filtration of sound applicable to hearing prostheses, In: Proceedings: the 4th Intern. Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery(RSFD’96), Tokyo, Japan, November 1996, pp. 168–175.Google Scholar
  37. 37.
    A. Czyzewski and B. Kostek, Restoration of old records employing Artificial Intelligence methods, In: Proceedings: the LASTED Internat. Conference–Artificial Intelligence, Expert Systems and Neural Networks, Honolulu, Hawaii, 1996, pp. 372–375.Google Scholar
  38. 38.
    A. Czyzewski, B. Kostek, H. Skarzynski, and R. Krôlikowski, Evaluation of some properties of the human auditory system using rough sets, In: Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, 1998, pp. 965–969.Google Scholar
  39. 39.
    A. Czyzewski and R. Krôlikowski, Noise reduction in audio signals based on the perceptual coding approach, in: Proceedings: the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz NY, October 1999, pp. 147–150.Google Scholar
  40. 40.
    A. Czyzewski and R. Krôlikowski, Noise reduction algorithms employing an intelligent inference engine for multimedia applications, in: Proceedings: the IEEE 2nd Workshop on Multimedia Signal Processing, Redondo Beach CA, December 1998, pp. 125–130.Google Scholar
  41. 41.
    A. Czyzewski, R. Krôlikowski, S. K. Zielinski, and B. Kostek, Echo and noise reduction methods for multimedia communication systems, in: Proceedings: the IEEE Signal Processing Society 1999 Workshop on Multimedia Signal Processing, Copenhagen, Denmark, September 1999, pp. 239–244.Google Scholar
  42. 42.
    A. Czyzewski, H. Skarzynski, B. Kostek, and R. Krôlikowski, Rough set analysis of electro-stimulation test database for the prediction of post-operative profits in cochlear implanted patients, in: Proceedings: the 7th Intern. Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999, pp. 109117.Google Scholar
  43. 43.
    A. Czyzewski, H. Skariynski, and B. Kostek, Multimedia databases in hearing and speech pathology, in: Proceedings: the World Automation Congress(WAC’98), Anchorage, Alaska, May 1998, pp. IFMIP-052. 1052. 6.Google Scholar
  44. 44.
    R. Deja, Conflict analysis, in: Proceedings: the 7th European Congress on Intelligent Techniques and Soft Computing(EUFIT’99), Aachen, Germany, September 1999.Google Scholar
  45. 45.
    S. Demri, A class of decidable information logics, Theoretical Computer Science, 195 (1), 1998, pp. 33–60.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    S. Demri and B. Konikowska, Relative similarity logics are decidable: reduction to FO2 with equality, in: Proceedings: JELIA 88, LNAI 1489, Springer-Verlag, Berlin, 1998, pp. 279–293.Google Scholar
  47. 47.
    S. Demri and E. Orlowska, Informational representability: Abstract models versus concrete models, in: D. Dubois and H. Prade (eds.), Fuzzy sets, Logics and Reasoning about Knowledge, Kluwer Academic Publishers, Dordrecht, 1999, pp. 301–314.CrossRefGoogle Scholar
  48. 48.
    S. Demri and E. Orlowska, Informational representability of models for information logics, in: E. Orlowska (ed.), Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, Physica—Verlag, Heidelberg, 1998, pp. 383–409.Google Scholar
  49. 49.
    S. Demri, E. Orlowska, and D. Vakarelov, Indiscernibility and complementarity relations in Pawlak’s information systems, in: Liber Amicorum for Johan van Benthem’s 50th Birthday, 1999.Google Scholar
  50. 50.
    A.I. Dimitras, R. Słowiński, R. Susmaga, and C. Zopounidis: Business failure prediction using rough sets, European Journal of Operational Research 114, 1999, pp. 49–66.CrossRefGoogle Scholar
  51. 51.
    Ju. V. Dudina and A. N. Knyazev, On complexity of language word recognition generated by context-free grammars with one non-terminal symbol (in Russian), Bulletin of Nizhny Novgorod State University. Mathematical Simulation and Optimal Control19, 1998, pp. 214–223.Google Scholar
  52. 52.
    A. E. Eiben, T. J. Euverman, W. Kowalczyk, and F. Slisser, Modeling customer retention with statistical techniques, rough data models, and genetic programming, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer—Verlag, Singapore, 1999, pp. 330–348.Google Scholar
  53. 53.
    P. Ejdys and G. Góra, The More We Learn the Less We Know? - On Inductive Learning from Examples, Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems(ISMIS’99), Warsaw, Poland, June 1999, LNAI, Springer-Verlag, Berlin, in print.Google Scholar
  54. 54.
    L. Goodwin, J. Prather, K. Schlitz, M. A. Iannacchione, M. Hage, W. E. Hammond Sr., and J. W. Grzymala-Busse, Data mining issues for improved birth outcomes, Biomedical Sciences Instrumentation 34, 1997, pp. 291–296.Google Scholar
  55. 55.
    S. Greco, B. Matarazzo, and R. Słowiński, Dominance-based rough set approach to rating analysis, Gestion 2000 Magazine, to appear.Google Scholar
  56. 56.
    S. Greco, B. Matarazzo, and R. Słowiński, Decision rules, in: Encyclopedia of Management, 4th edition, 2000, to appear.Google Scholar
  57. 57.
    S. Greco, B. Matarazzo, and R. Słowiński, Rough set processing of vague information using fuzzy similarity relation, in: C. Calude and G. Paun (eds.), Finite versus Infinite - Contributions to an Eternal Dilemma, Springer-Verlag, Berlin, to appear.Google Scholar
  58. 58.
    S. Greco, B. Matarazzo, and R. Słowiński, Rough approximation of a preference relation by dominance relations, European Journal of Operational Research 117, 1999, pp. 63–83.MATHCrossRefGoogle Scholar
  59. 59.
    S. Greco, B. Matarazzo, and R. Słowiński, The use of rough sets and fuzzy sets in MCDM, in: T. Gal, T. Stewart, and T. Hanne (eds.), Advances in Multiple Criteria Decision Making, Kluwer Academic Publishers, Boston, 1999, Chapter 14: pp. 14. 1–14. 59.Google Scholar
  60. 60.
    S. Greco, B. Matarazzo, R. Słowiński, Fuzzy dominance as basis for rough approximations, in: Proceedings: the 4th Meeting of the EURO WG on Fuzzy Sets and 2nd Internat. Conf. on Soft and Intelligent Computing, (EUROFUSE-SIC’99), Budapest, Hungary, May 1999, pp. 273–278.Google Scholar
  61. 61.
    S. Greco, B. Matarazzo, and R. Słowiński, Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems, in: Proceedings: New Directions in Rough Sets, Data Mining and Granular-Soft Computing (RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999, pp. 146–157.CrossRefGoogle Scholar
  62. 62.
    S. Greco, B. Matarazzo, and R. Słowiński, Fuzzy dominance as a basis for rough approximations, in: Proceedings: Workshop Italiano sella Logica Fuzzy (Wilf’99), Genova, Italy, June 1999, pp. 14–16.Google Scholar
  63. 63.
    S. Greco, B. Matarazzo, and R. Słowiński, Misurazione congiunta e incoerenze nelle preferenze, in: Atti del Ventitreesimo Convegno A.M.A.S. E.S., Rende-Cosenza, Italy, September 1999, pp. 255–269.Google Scholar
  64. 64.
    S. Greco, B. Matarazzo, and R. Słowiński, L’approcio dei rough sets all’analisi del rating finanziario, in: Atti del Ventitreesimo Convegno A. M. A. S. E. S., Rende-Cosenza, Italy, September 1999, pp. 271286.Google Scholar
  65. 65.
    S. Greco, B. Matarazzo, and R. Słowiński, On joint use of indiscernibility, similarity and dominance in rough approximation of decision classes, in: Proceedings: the 5th International Conference of the Decision Sciences Institute, Athens, Greece, July 1999, pp. 1380–1382; also in: Research Report RA-012/98, Inst. Comp. Sci., Poznan Univ. Technology, 1998.Google Scholar
  66. 66.
    S. Greco, B. Matarazzo, and R.Słowiński, A new rough set approach to evaluation of bankruptcy risk, in: C. Zopounidis (ed.), Operational Tools in the Management of Financial Risks, Kluwer Academic Publishers, Dordrecht, 1998, pp. 121–136.CrossRefGoogle Scholar
  67. 67.
    S. Greco, B. Matarazzo, and R. Słowiński, Fuzzy similarity relation as a basis for rough approximations, in: Proceedings: Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 283–289.Google Scholar
  68. 68.
    S. Greco, B. Matarazzo, and R. Słowiński, A new rough set approach to multi-criteria and multi-attribute classification, in: Proceedings: Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 60–67.CrossRefGoogle Scholar
  69. 69.
    S. Greco, B. Matarazzo, and R. Słowiński, Rough approximation of a preference relation in a pair—wise comparison table, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica-Verlag, Heidelberg, 1998, pp. 13–36.CrossRefGoogle Scholar
  70. 70.
    S. Greco, B. Matarazzo, and R. Słowiński, Rough set theory approach to decision analysis, in: Proceedings: the 3rd European Workshop on Fuzzy Decision Analysis and Neural Networks for Management, Planning and Optimization (EFDAN’98), Dortmund, Germany, June 1998, pp. 1–28.Google Scholar
  71. 71.
    S. Greco, B. Matarazzo, and R. Słowiński: Conjoint measurement, preference inconsistencies and decision rule model, in: Proceedings: the 2nd International Workshop on Preferences and Decisions, Trento, Italy, July 1998, pp. 49–53.Google Scholar
  72. 72.
    S. Greco, B. Matarazzo, and R. Słowiński, New developments in the rough set approach to multi—attribute decision analysis, in: Tutorials and Research Reviews: 16th European Conference on Operational Research (EURO XVI ), Brussels, Belgium, July 1998, 37 pp.Google Scholar
  73. 73.
    S. Greco, B. Matarazzo, and R. Słowiński, Rough set handling of ambiguity, in: Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, 1998, pp. 3–14.Google Scholar
  74. 74.
    S. Greco, B. Matarazzo, and R. Słowiński, Fuzzy measures as a technique for rough set analysis, in: Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, 1998, pp. 99–103.Google Scholar
  75. 75.
    S. Greco, B. Matarazzo, and R. Słowiński, Un nuovo approccio dei rough sets alla classificazione multiattributo e multicriteriale, in: Atti del Ventiduesimo Convegno A. M. A. S. E. S., Genova, Italy, September 1998, Bozzi Editore, Genova, 1998, pp. 249–260.Google Scholar
  76. 76.
    S. Greco, B. Matarazzo, and R. Słowiński, Modellizzazione delle preferenze per mezzo di regole di decisione, in: Atti del Ventiduesimo Convegno A. M. A. S. E. S., Genova, Italy, September 1998, Bozzi Editore, Genova, 1998, pp. 233–247.Google Scholar
  77. 77.
    S. Greco, B. Matarazzo, and R. Słowiński, The rough set approach to decision support, in: Proceedings: the Annual Conference of the Operational Research Society of Italy (AIRO), Treviso, Italy, September 1998, pp. 561–564.Google Scholar
  78. 78.
    S. Greco, B. Matarazzo, R. Słowiński, and A. Tsoukias, Exploitation of a rough approximation of the outranking relation in multi—criteria choice and ranking, in: T.J. Stewart and R.C. van den Honert (eds.), Trends in Multi—criteria Decision Making, LNEMS 465, Springer—Verlag, Berlin, 1998, pp. 45–60.Google Scholar
  79. 79.
    S. Greco, B. Matarazzo, R. Słowiński, and S. Zanakis, Rough set analysis of information tables with missing values, in: Proceedings: the 5th International Conference of the Decision Sciences Institute, Athens, Greece, July 1999, pp. 1359–1362.Google Scholar
  80. 80.
    J. P. Grzymala —Busse, J. W. Grzymala—Busse, and Z. Hippe, Prediction of melanoma using rule induction based on rough sets, in: Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Cybernetics and Informatics, July 2001, vol. VII, pp. 523–527.Google Scholar
  81. 81.
    J. W. Grzymala—Busse, Applications of the rule induction system LERS, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 366–375.Google Scholar
  82. 82.
    J. W. Grzymala—Busse, LERS: A knowledge discovery system, in: L. Polkowski and A. Skowron (eds.),Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 562–565.Google Scholar
  83. 83.
    J. W. Grzymala—Busse, Rule induction system LERS, Bull. of Intern. Rough Set Society 2, 1998, pp. 18–20.Google Scholar
  84. 84.
    J. W. Grzymala—Busse, Classification of unseen examples under uncertainty, Fundamenta Informaticae 30, 1997, pp. 255–267.Google Scholar
  85. 85.
    J. W. Grzymala—Busse, A new version of the rule induction system LERS, Fundamenta Informaticae 31, 1997, pp. 27–39.MATHGoogle Scholar
  86. 86.
    J. W. Grzymala—Busse, W. J. Grzymala—Busse, and L. K. Goodwin, Coping with missing attribute values based on closest fit in preterm birth data: a rough set approach, Computational intelligence: An Intern. Journal, 17, 2001, pp. 425–434.Google Scholar
  87. 87.
    J. W. Grzymala—Busse and L. K. Goodwin, Predicting pre—term birth risk using machine learning from data with missing values, Bull. of Intern. Rough Set Society 1, 1997, pp. 17–21.Google Scholar
  88. 88.
    J. W. Grzymala—Busse, L. K. Goodwin, and Xiaohui Zhang, Pre—term birth risk assessed by a new method of classification using selective partial matching, in: Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems (ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer Verlag, Berlin, 1999, pp. 612–620.Google Scholar
  89. 89.
    J. W. Grzymala—Busse, L. K. Goodwin, and Xiaohui Zhang, Increasing sensitivity of pre—term birth by changing rule strengths, in: Proceedings: the 8th Workshop on Intelligent Information Systems (IIS’99), Ustrorn, Poland, June 1999, pp. 127–136.Google Scholar
  90. 90.
    J. W. Grzymala—Busse, P. Loupe, and S. Schroeder, Analysis of behavioral responsiveness of rats to GBR12909 using data mining system LERS, in: Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Cybernetics and Informatics, July 2001, vol. VII, pp. 528–533.Google Scholar
  91. 91.
    J. W. Grzymala—Busse, W. J. Grzymala—Busse, and L. K. Goodwin, A closest fit approach to missing attribute values in pre—term birth data, in: Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular—Soft Computing (RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer—Verlag, Berlin, 1999, pp. 405–413.Google Scholar
  92. 92.
    J. W. Grzymala—Busse and L. J. Old, A machine learning experiment to determine part of speech from word-endings, in: Proceedings: the 10th Intern. Symposium on Methodologies for Intelligent Systems (ISMIS’97), Charlotte NC, October 1997, LNAI 1325, Springer-Verlag, Berlin, 1997, pp. 497–506.Google Scholar
  93. 93.
    J. W. Grzymala—Busse, S. Y. Sedelow, and W. A. Sedelow Jr., Machine learning and knowledge acquisition, rough sets, and the English semantic code, in: T. Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers,Dordrecht, 1997, pp. 91–107.CrossRefGoogle Scholar
  94. 94.
    J. W. Grzymala—Busse and Soe Than, Inducing simpler rules from reduced data, in: Proceedings: the Seventh Workshop on Intelligent Information Systems (IIS’98), Malbork, Poland, June 1998, pp. 371–378.Google Scholar
  95. 95.
    J. W. Grzymala—Busse and J. Stefanowski, Two approaches to numerical attribute discretization for rule induction, in: Proceedings: the 5th International Conference of the Decision Sciences Institute, Athens, Greece, July 1999, pp. 1377–1379.Google Scholar
  96. 96.
    J. W. Grzymala—Busse and J. Stefanowski, Discretization of numerical attributes by direct use of the rule induction algorithm LEM2 with interval extension, in: Proceedings: the Sixth Symposium on Intelligent Information Systems (IIS’97), Zakopane, Poland, June 1997, pp. 149158.Google Scholar
  97. 97.
    J. W. Grzymala—Busse and Ta-Yuan Hsiao, Dropping conditions in rules induced by ID3, in: Proceedings: the 6th International Workshop Google Scholar
  98. on Rough Sets, Data Mining and Granular Computing (RSDMGrC’98) at the 4th Joint Conference on Information Sciences (JCIS’98), Research Triangle Park NC, October 1998, pp. 351–354.Google Scholar
  99. 98.
    J. W. Grzymala—Busse and A. Y. Wang, Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values, in: Proceedings: the 5th Intern. Workshop on Rough Sets (RSSC’97) at the 3rd Joint Conference on Information Sciences (JCIS’97), Research Triangle Park NC, March 1997, pp. 69–72.Google Scholar
  100. 99.
    J. W. Grzymala—Busse and P. Werbrouck, On the best search method in the LEM1 and LEM2 algorithms, in:E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, Physica—Verlag, Heidelberg, 1998, pp. 75–91.Google Scholar
  101. 100.
    J. W. Grzymala—Busse and Xihong Zou, Classification strategies using certain and possible rules, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer Verlag, Berlin, 1998, pp. 37–44.Google Scholar
  102. 101.
    Hoang Kiem and Do Phuc, A combined multi-dimensional Genetic Algorithm and Kohonen Neural Network for cluster discovery in Data Mining, in: Proceedings: the 3rd International Conference on Data Mining (PAKDD’99), Beijing, China, 1999.Google Scholar
  103. 102.
    Hoang Kiem and Do Phuc, A Rough Genetic Kohonen Neural Network for conceptual cluster discovery, in: Proceedings: the 7th Work-Shop on Rough Set, Fuzzy Set, Granular Computing and Data Mining (RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer Verlag, Berlin, 1999, pp. 448–452.Google Scholar
  104. 103.
    Hoang Kiem and Do Phuc, On the association rules based extension of the dependency of attributes in rough set theory for classification problem, Magazine of Science and Technology 1, 1999, Vietnam National University.Google Scholar
  105. 104.
    Hoang Kiem and Do Phuc, Discovering the binary and fuzzy association rules from database, Magazine of Science and Technology 4, 1999, Vietnam National University.Google Scholar
  106. 105.
    V. Jog, W. Michalowski, R. Słowiński, and R. Susmaga, The rough set analysis and the neural networks classifier — a hybrid approach to predicting stocks’ performance, in: Proceedings: the 5th International Conference of the Decision Sciences Institute, Athens, Greece, July 1999, pp. 1386–1388.Google Scholar
  107. 106.
    R. E. Kent, Soft concept analysis, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision—Making, Springer—Verlag, Singapore, 1999, pp. 215–232.Google Scholar
  108. 107.
    A. N. Knyazev, On word recognition in language generated by 1-contextfree grammar (in Russian), in: Proceedings: 12th International Conference on Problems of Theoretical Cybernetics, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, Part 1 (1999), pp. 96.Google Scholar
  109. 108.
    A. N. Knyazev, On recognition of words from languages generated by linear grammars with one non—terminal symbol, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 111–114.Google Scholar
  110. 109.
    J. Komorowski, L. Polkowski, and A. Skowron, Rough Sets: A Tutorial, in: Lecture Notes for ESSLLI’99: the 11th European Summer School in Language, Logic and Information, Utrecht, Holland, August 1999, 111Google Scholar
  111. 110.
    J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron, Rough sets: A tutorial, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision Making, Springer Verlag, Singapore, 1999, pp. 3–98.Google Scholar
  112. 111.
    J. Komorowski, L. Polkowski, and A. Skowron, Towards a rough mereology—based logic for approximate solution synthesis, Studia Logica 58 (1), 1997, pp. 143–184.MathSciNetMATHCrossRefGoogle Scholar
  113. 112.
    J. Komorowski, L. Polkowski, and A. Skowron, Rough sets for Data Mining and Knowledge Discovery (Tutorial—abstract), in: Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery, Trondheim, NorwayGoogle Scholar
  114. LNAI 1263, Springer—Verlag, Berlin, pp. 395–395.Google Scholar
  115. 113.
    B. Kostek, Soft Computing in Acoustics, Applications of Neural Networks, Fuzzy Logic and Rough Sets to Musical Acoustics in the Series: Studies in Fuzziness and Soft Computing(J. Kacprzyk (ed.)), vol. 31, Physica—Verlag, Heilderberg, 1999.Google Scholar
  116. 114.
    B. Kostek, Assessment of concert hall acoustics using rough set and fuzzy set approach, in: S. K. Pal and A. Skowron (eds.),:Rough—Fuzzy Hybridization: A New Trend in Decision Making, Springer-Verlag, Singapore, 1999, pp. 381–396.Google Scholar
  117. 115.
    B. Kostek, Rough—fuzzy method of subjective test result processing, in: Proceedings: the 8th International Symposium on Sound Engineering Google Scholar
  118. and Mastering (ISSEM’99), Gdansk, Poland, September 1999, pp. 1118.Google Scholar
  119. 116.
    B. Kostek, Soft computing—based recognition of musical sounds, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 193–213.CrossRefGoogle Scholar
  120. 117.
    B. Kostek, Computer—based recognition of musical phrases using the rough set approach, J. Information Sciences 104, 1998, pp. 15–30.CrossRefGoogle Scholar
  121. 118.
    B. Kostek, Soft set approach to the subjective assessment of sound quality, in: Proceedings: the Conference FUZZ-IEEE’98 at the World Congress on Computational Intelligence(WCCI’98), Anchorage, Alaska, May 1998, pp. 669–674.Google Scholar
  122. 119.
    B. Kostek, Automatic recognition of sounds of musical instruments: An expert media application, in: Proceedings: the World Automation Congress(WAC’98), pp. IFMIP-053.Google Scholar
  123. 120.
    B. Kostek, Sound quality assessment based on the rough set classifier, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing(EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 193–195.Google Scholar
  124. 121.
    B. Kostek, Soft set approach to the subjective assessment of sound quality, in: Proceedings: the 9th Intern. Conference on Systems Research Informatics and Cybernetics(InterSymp’97), Baden—Baden, Germany, 1997.Google Scholar
  125. 122.
    B. Kostek, Rough set and fuzzy set methods applied to acoustical analyses, J. Intelligent Automation and Soft Computing, 2 (2), 1996, pp. 147–160.Google Scholar
  126. 123.
    K. Krawiec, R. Słowiński, and D. Vanderpooten, Learning of decision rules from similarity based rough approximations, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 37–54.CrossRefGoogle Scholar
  127. 124.
    R. Krôlikowski and A. Czyzewski, Noise reduction in telecommunication channels using rough sets and neural networks, in: Proceedings: the 7th Intern. Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer—Verlag, Berlin, 1999, pp. 109117.Google Scholar
  128. 125.
    R. Krôlikowski and A. Czyzewski, Applications of rough sets and neural nets to noisy audio enhancement, in: proceedings: the 7th European Congress on Intelligent Techniques and Soft Computing(EUFIT’99), Aachen, Germany, September 1999.Google Scholar
  129. 126.
    M. Lifantsev and A. Wasilewska, A decision procedure for rough sets equalities, in: Proceedings: the 18th International Conference of the North American Fuzzy Information Processing Society(NAFIPS’99), New York NY, June 1999, pp. 786–791.Google Scholar
  130. 127.
    T. Y. Lin, Data Mining and machine oriented modeling: A granular computing approach, Journal of Applied Intelligence, in print.Google Scholar
  131. 128.
    T. Y. Lin, Theoretical sampling for Data Mining, in: Proceedings: the 14th Annual International Symposium Aerospace/Defense Sensing, Simulation, and Controls(SPIE) 4057, Orlando Fla., April 2000, to appear.Google Scholar
  132. 129.
    T. Y. Lin, Attribute transformations on numerical databases: Applications to stock market data, in: Methodologies for Knowledge Discovery and Data Mining, LNAI, Springer-Verlag, Berlin, 2000, to appear.Google Scholar
  133. 130.
    T. Y. Lin, Belief functions and probability of fuzzy sets, in: Proceedings: the 8th IFSA World Congress(IFSA’99), Taipei, Taiwan, August 1999, pp. 219–223.Google Scholar
  134. 131.
    T. Y. Lin, Discovering patterns in numerical sequences using rough set theory, in: Proceedings: the 3rd World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando Fla., Cybernetics and Informatics, 1999, 5, pp. 568–572.Google Scholar
  135. 132.
    T. Y. Lin, Measure theory on granular fuzzy sets, in: Proceedings: the 18th International Conference of North America Fuzzy Information Processing Society, June 1999, pp. 809–813.Google Scholar
  136. 133.
    T. Y. Lin, Data Mining: Granular computing approach, in:Methodologies for Knowledge Discovery and Data Mining, the 3rd Pacific-Asia Conference, Beijing, China, April 1999, LNAI 1574, Springer-Verlag, Berlin, 1999, pp. 24–33.Google Scholar
  137. 134.
    T. Y. Lin, Granular computing: Fuzzy logic and rough sets, in: L.A. Zadeh and J. Kacprzyk (eds), Computing with Words in Information Intelligent Systems 1, Physica-Verlag, Heidelberg, 1999, pp. 183–200.CrossRefGoogle Scholar
  138. 135.
    T. Y. Lin, Granular computing on binary relations II: Rough set representations and belief functions, in: L. Polkowski and A. Skowron (eds), Rough Sets In Knowledge Discovery 1.Methodology and Applications, Physica-Verlag, Heidelberg, 1998, pp. 121–140.Google Scholar
  139. 136.
    T. Y. Lin, Granular computing on binary relations I: Data Mining and neighborhood systems, in: L. Polkowski and A. Skowron (eds.), Rough Sets In Knowledge Discovery 1. Methodology and Applications, Physica-Verlag, Heidelberg, 1998, pp. 107–121.Google Scholar
  140. 137.
    T. Y. Lin, Context free fuzzy sets and information tables, in:Proceedings: the Sixth European Congress on Intelligent Techniques and Soft Computing(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, pp. 76–80.Google Scholar
  141. 138.
    T. Y. Lin, Granular fuzzy sets: Crisp representation of fuzzy sets, in: Proceedings: the Sixth European Congress on Intelligent Techniques and Soft Computing(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, pp. 94–98.Google Scholar
  142. 139.
    T. Y. Lin, Fuzzy partitions: Rough set theory, in: Proceedings: the Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1167–1174.Google Scholar
  143. 140.
    T. Y. Lin, Sets with partial memberships: A Rough sets view of fuzzy sets, in: Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence(WCCI’98), Anchorage, Alaska, May 1998.Google Scholar
  144. 141.
    T. Y. Lin and Q. Liu, First-order rough logic revisited, in: Proceedings: the 7th International Workshop on rough Sets, Fuzzy Sets, Data Mining and Granular-Soft computing(RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, pp. 276–284.Google Scholar
  145. 142.
    T. Y. Lin and E. Louie, A Data Mining approach using machine oriented modeling: finding association rules using canonical names, in: Proceedings: the 14th Annual International Symposium Aerospace/Defense Sensing, Simulation, and Controls (SPIE) 4057, Orlando Fla., April 2000, to appear.Google Scholar
  146. 143.
    T. Y. Lin, Ning Zhong, J. J. Dong, and S. Ohsuga, An incremental, probabilistic rough set approach to rule discovery, in: Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence(WCCI’98), Anchorage, Alaska, May 1998.Google Scholar
  147. 144.
    T. Y. Lin, Ning Zhong, J. J. Dong, and S. Ohsuga, Frameworks for mining binary relations in data, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 387–393.Google Scholar
  148. 145.
    T. Y. Lin and S. Tsumoto, Context-free fuzzy sets in Data Mining context, in: Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular—Soft computing(RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, pp. 212–220.Google Scholar
  149. 146.
    P. Lingras and C. Davies, Applications of rough genetic algorithms, Computational Intelligence: An Intern. journal, 17, 2001, pp. 435445.Google Scholar
  150. 147.
    B. Marszal-Paszek, Linking a-approximation with evidence theory, in: Proceedings: the 6th International Conference Information Processing and Management of Uncertainty in Knowledge-Base System(IPMU’96), Granada, Spain, 1996, pp. 1153–1158.Google Scholar
  151. 148.
    B. Marszal-Paszek and P. Paszek, Searching for attributes which well determinate decision in the decision table, in: Proceedings: Intelligent Information Systems VIII, Ustron, Poland, 1999, pp. 146–148.Google Scholar
  152. 149.
    B. Marszal-Paszek and P. Paszek, Extracting strong relationships between data from decision table, in: Proceedings: Intelligent Information Systems VII, Malbork, Poland, 1998, pp. 396–399.Google Scholar
  153. 150.
    V. W. Marek and M. Truszczynski, Contributions to the theory of rough sets, Fundamenta Informaticae39 (4), 1999, pp. 389–409.MathSciNetMATHGoogle Scholar
  154. 151.
    E. Martienne and M. Quafafou, Learning fuzzy relational descriptions using the logical framework and rough set theory, in: Proceedings: the th IEEE International Conference on Fuzzy Systems(FUZZ-IEEE’98) IEEE Neural Networks Council, 1998.Google Scholar
  155. 152.
    E. Martienne and M. Quafafou, Learning logical descriptions for document understanding: a rough sets based approach, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998.Google Scholar
  156. 153.
    E. Martienne and M. Quafafou, Vagueness and data reduction in learning of logical descriptions, in: Proceedings: the 13th European Conference on Artificial Intelligence(ECAI’98), Brighton, UK, August 1998, John Wiley and Sons, Chichester, 1998.Google Scholar
  157. 154.
    P. Mitra, S. Mitra, and S.K. Pal, Staging of cervical cancer with Soft Computing, IEEE Trans. Bio-Medical Engineering, in print.Google Scholar
  158. 155.
    S. Mitra, M. Banerjee, and S.K. Pal, Rough Knowledge-based networks, fuzziness and classification, Neural Computing and Applications7, 1998, pp. 17–25.MATHCrossRefGoogle Scholar
  159. 156.
    S. Mitra, P. Mitra, and S. K. Pal, Evolutionary design of modular Rough Fuzzy MLP, Neurocomputing, communicated.Google Scholar
  160. 157.
    S. Miyamoto and Kyung Soo Kim, Images of fuzzy multi-sets by one-variable functions and their applications (in Japanese), Journal of Japan Society for Fuzzy Theory and Systemsl0(1), 1998, pp. 150–157.Google Scholar
  161. 158.
    S. Miyamoto, Application of rough sets to information retrieval,Journal of the American Society for Information Science 47(3), 1998, pp. 195205.Google Scholar
  162. 159.
    S. Miyamoto, Indexed rough approximations and generalized possibility theory, in: Proceedings: FUZZ-IEEE’98, May 4–9, 1998, Anchorage, Alaska, pp. 791–795.Google Scholar
  163. 160.
    S. Miyamoto, Fuzzy multi-sets and a rough approximation by multiset-valued function, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, PhysicaVerlag, Heidelberg, 1998, pp. 141–159.Google Scholar
  164. 161.
    H. Moradi, J. W. Grzymala-Busse, and J. A. Roberts, Entropy of English text: Experiments with humans and a machine learning system based on rough sets, Information Sciences. An International Journal 104, 1998, pp. 31–47.Google Scholar
  165. 162.
    M. Ju. Moshkov, Time complexity of decision trees (in Russian), in: Proceedings: the 9th Workshop on Synthesis and Complexity of Control Systems, Nizhny Novgorod, Russia, 1998, Moscow State University Publishers, Moscow, 1999, pp. 52–62.Google Scholar
  166. 163.
    M. Ju. Moshkov, Local approach to construction of decision trees, in: S.K.Pal and A. Skowron (eds.), Rough Fuzzy Hybridization. A New Trend In Decision-Making, Springer-Verlag, Singapore, 1999, pp. 163176.Google Scholar
  167. 164.
    M. Ju. Moshkov, On complexity of deterministic and nondeterministic decision trees (in Russian), in: Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, p. 164.Google Scholar
  168. 165.
    M. Ju. Moshkov, On the depth of decision trees (in Russian), Doklady RAN, 358 (1), 1998, p. 26.MathSciNetGoogle Scholar
  169. 166.
    M. Ju. Moshkov, Some relationships between decision trees and decision rule systems, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 499–505.Google Scholar
  170. 167.
    M. Ju. Moshkov, Three ways for construction and complexity estimation of decision trees, in: Program: the 16th European Conference on Operational Research(EURO XVI ), Brussels, Belgium, July 1998, pp. 66–67.Google Scholar
  171. 168.
    M. Ju. Moshkov, Rough analysis of tree—program time complexity, in: Proceedings: the 7th International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems, La Sorbonne, Paris, France, July 1998, pp. 1376–1380.Google Scholar
  172. 169.
    M. Ju. Moshkov, On time complexity of decision trees, in: L. Polkowski and A. Skowron (eds.),Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 160–191.Google Scholar
  173. 170.
    M. Ju. Moshkov, On time complexity of decision trees (in Russian), in: Proceedings: International Siberian Conference on Operational Research, Novosibirsk, Russia, 1998, pp. 28–31.Google Scholar
  174. 171.
    M. Ju. Moshkov, On complexity of decision trees over infinite information systems, in: Proceedings: the Third Joint Conference on Information Sciences(JCIS’97), Duke University, USA, 1997, pp. 353–354.Google Scholar
  175. 172.
    M. Ju. Moshkov, Algorithms for constructing of decision trees, in: Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery(PKDD’97), Trondheim, Norway, 1997, LNAI 1263, Springer—Verlag, Berlin, 1997, pp. 335–342.Google Scholar
  176. 173.
    M. Ju. Moshkov, Unimprovable upper bounds on time complexity of decision trees, Fundamenta Informaticae 31 (2), 1997, pp. 157–184.MathSciNetMATHGoogle Scholar
  177. 174.
    M. Ju. Moshkov, Rough analysis of tree-programs, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’ 97 ), Aachen, Germany, September 1997, Verlag Mainz, Aachen, pp. 231–235.Google Scholar
  178. 175.
    M. Ju. Moshkov, Complexity of deterministic and nondeterministic decision trees for regular language word recognition, in: Proceedings: the 3rd International Conference on Developments in Language Theory, Thessaloniki, Greece, 1997, pp. 343–349.Google Scholar
  179. 176.
    M. Ju. Moshkov, Comparative analysis of time complexity of deterministic and nondeterministic tree—programs (in Russian), in:Actual Problems of Modern Mathematics 3, Novosibirsk University Publishers, Novosibirsk, 1997, pp. 117–124.Google Scholar
  180. 177.
    M. Ju. Moshkov and I. V. Chikalov, On effective algorithms for conditional test construction (in Russian), in: Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, pp. 165.Google Scholar
  181. 178.
    M. Ju. Moshkov and I. V. Chikalov, Bounds on average depth of decision trees, in: Proceedings: the Fifth European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, pp. 226–230.Google Scholar
  182. 179.
    M. Ju. Moshkov and I. V. Chikalov, Bounds on average weighted depth of decision trees, Fundamenta Informaticae 31 (2), 1997, pp. 145–156.MathSciNetMATHGoogle Scholar
  183. 180.
    M. Ju. Moshkov and A. Moshkova, Optimal bases for some closed classes of Boolean functions, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT 97 ), Aachen, Germany, September 1997, Verlag Mainz, Aachen, pp. 1643–1647.Google Scholar
  184. 181.
    A. M. Moshkova, On complexity of “retaining” fault diagnosis in circuits (in Russian), in: Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, p. 166.Google Scholar
  185. 182.
    A. M. Moshkova, On diagnosis of retaining faults in circuits, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 513–516.Google Scholar
  186. 183.
    A. M. Moshkova, Diagnosis of “retaining” faults in circuits (in Russian), Bulletin of Nizhny Novgorod State University. Mathematical Simulation and Optimal Control 19, 1998, pp. 204–213.Google Scholar
  187. 184.
    A. Nakamura, Conflict logic with degrees, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999, pp. 136–150.Google Scholar
  188. 185.
    Nguyen Hung Son, From optimal hyperplanes to optimal decision trees, Fundamenta Informaticae 34 (1–2), 1998, pp. 145–174.Google Scholar
  189. 186.
    Nguyen Hung Son, Discretization problems for rough set methods, in: Proceedings: the First International Conference on Rough Sets and Current Trend in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 545–552.Google Scholar
  190. 187.
    Nguyen Hung Son, Discretization of real value attributes. Boolean reasoning approach, Ph.D. Dissertation, supervisor A. Skowron, Warsaw University,Warsaw, 1997, pp. 1–90.Google Scholar
  191. 188.
    Nguyen Hung Son, Rule induction from continuous data, in: Proceedings: the 5th International Workshop on Rough Sets and Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, March 1997, pp. 81–84.Google Scholar
  192. 189.
    Nguyen Hung Son and Nguyen Sinh Hoa, An application of discretization methods in control, in: Proceedings: the Workshop on Robotics, Intelligent Control and Decision Support Systems, Polish-Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 47–52.Google Scholar
  193. 190.
    Nguyen Hung Son and Nguyen Sinh Hoa, Discretization methods in Data Mining, in: L. Polkowski and A. Skowron (eds.): Rough Sets in Knowledge Discovery 1. Methodology and Applications, PhysicaVerlag, Heidelberg, 1998, pp. 451–482.Google Scholar
  194. 191.
    Nguyen Hung Son and Nguyen Sinh Hoa, Discretization methods with back—tracking, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 201–205.Google Scholar
  195. 192.
    Nguyen Hung Son, Nguyen Sinh Hoa, and A. Skowron, Decomposition of task specifications, in: Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’99), Warsaw, Poland, June 8–11, LNAI 1609, Springer—Verlag, Berlin, pp. 310–318.Google Scholar
  196. 193.
    Nguyen Hung Son and A. Skowron, Boolean reasoning scheme with some applications in Data Mining, in: Proceedings: Principles of Data Mining and Knowledge Discovery (PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer—Verlag, Berlin, 1999, pp. 107115.Google Scholar
  197. 194.
    Nguyen Hung Son and A. Skowron, Task decomposition problem in multi—agent system, in: Proceedings: the Workshop on Concurrency, Specification and Programming, Berlin, Germany, September 1998, Informatik Bericht 110, Humboldt—Universität zu Berlin, pp. 221–235.Google Scholar
  198. 195.
    Nguyen Hung Son and A. Skowron, Boolean reasoning for feature extraction problems, in: Proceedings: the 10th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’97), Charlotte NC, October 1997, LNAI 1325, Springer—Verlag, Berlin, 1997, pp. 117–126.Google Scholar
  199. 196.
    Nguyen Hung Son and A. Skowron, Quantization of real value attributes: Rough set and boolean reasoning approach, Bulletin of International Rough Set Society 1 (1), 1997, pp. 5–16.Google Scholar
  200. 197.
    Nguyen Hung Son, A. Skowron, and J. Stepaniuk, Granular computing: a rough set approach,Computational Intelligence: An Intern. Journal, 17, 2001, pp. 514–544.Google Scholar
  201. 198.
    Nguyen Hung Son, M. Szczuka, and D. Slgzak, Neural network design: Rough set approach to continuous data, in: Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’97), Trondheim, Norway,June 1997, LNAI 1263, Springer-Verlag, Berlin, 1997, pp. 359–366.Google Scholar
  202. 199.
    Nguyen Hung Son and D. Slgzak, Approximate reducts and association rules: correspondence and complexity results, in: Proceedings: the 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular—Soft Computing (RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999, pp. 137–145.Google Scholar
  203. 200.
    Nguyen Sinh Hoa, Discovery of generalized patterns, in: Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer-Verlag, Berlin, in print.Google Scholar
  204. 201.
    Nguyen Sinh Hoa, Data regularity analysis and applications in data mining, Ph.D. Dissertation, supervisor B. Chlebus, Warsaw University, Warsaw, Poland, 1999.Google Scholar
  205. 202.
    Nguyen Sinh Hoa and Nguyen Hung Son, Pattern extraction from data, in: Proceedings: the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1346–1353.Google Scholar
  206. 203.
    Nguyen Sinh Hoa and Nguyen Hung Son, Pattern extraction from data, Fundamenta Informaticae 34 (1–2), 1998, pp. 129–144.MathSciNetMATHGoogle Scholar
  207. 204.
    Nguyen Sinh Hoa, Nguyen Than Trung, L. Polkowski, A. Skowron, P. Synak, and J. Wróblewski, Decision rules for large data tables, in: Proceedings: CESA ‘86 IMACS Multiconference: Computational Engineering in Systems Applications (CESA’96), Lille, France, July 1996, pp. 942–947.Google Scholar
  208. 205.
    Nguyen Sinh Hoa and A. Skowron, Searching for relational patterns in data, in: Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’97), Trondheim, Norway, June 1997, LNAI 1263, Springer-Verlag, Berlin, 1997, pp. 265276.Google Scholar
  209. 206.
    Nguyen Sinh Hoa, A. Skowron, and P. Synak, Discovery of data patterns with applications to decomposition and classification problems, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, PhysicaVerlag, Heidelberg, 1998, pp. 55–97.Google Scholar
  210. 207.
    Nguyen Sinh Hoa, A. Skowron, P. Synak, and J. Wróblewski, Knowledge discovery in data bases: Rough set approach, in: Proceedings: the 7th International Fuzzy Systems Association World Congress (IFSA’97), Prague, the Czech Republic, June 1997, Academia, Prague, 1997, pp. 204–209.Google Scholar
  211. 208.
    A. Ohm, J. Komorowski, A. Skowron, and P. Synak, The design and implementation of a knowledge discovery toolkit based on rough sets— The ROSETTA system, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 376–399.Google Scholar
  212. 209.
    A. Ohm, J. Komorowski, A. Skowron, and P. Synak, The ROSETTA software system, In: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 572–576.Google Scholar
  213. 210.
    A. Ohm, J. Komorowski, A. Skowron, and P. Synak, A software system for rough data analysis, Bulletin of the International Rough Set Society 1 (2), 1997, pp. 58–59.Google Scholar
  214. 211.
    P. Paszek and A. Wakulicz—Deja, Optimalization diagnose in progressive encephalopathy applying the rough set theory, in: Intelligent Information Systems V, Deblin, Poland, 1996, pp. 142–151.Google Scholar
  215. 212.
    G. Paun, L. Polkowski, and A. Skowron, Rough set approximations of languages, Fundamenta Informaticae 32 (2), 1997, pp. 149–162.MathSciNetMATHGoogle Scholar
  216. 213.
    G. Paun, L. Polkowski, and A. Skowron, Parallel communicating grammar systems with negotiations, Fundamenta Informaticae 28 (3–4), 1996, pp. 315–330.MathSciNetMATHGoogle Scholar
  217. 214.
    G. Paun, L. Polkowski, and A. Skowron, Rough—set—like approximations of context—free and regular languages, in: Proceedings: Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU-96), Granada, Spain, July 1996, pp. 891–895.Google Scholar
  218. 215.
    Z. Pawlak, Combining rough sets and Bayes’ rule, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 401–408.Google Scholar
  219. 216.
    Z. Pawlak, Granularity of knowledge, indiscernibility, and rough sets, in: Proceedings: IEEE Conference on Evolutionary Computation, Anchorage, Alaska, May 5–9, 1998, pp. 106–110; also in: IEEE Transactions on Automatic Control 20, 1999, pp. 100–103.Google Scholar
  220. 217.
    Z. Pawlak, Rough set theory for intelligent industrial applications, in: Proceedings: the 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, Hawaii, 1999, pp. 37–44.Google Scholar
  221. 218.
    Z. Pawlak, Data Mining–a rough set perspective, in: Proceedings: Methodologies for Knowledge Discovery and Data Mining. The 3rd Pacific-Asia Conference, Beijing, China, Springer- Verlag, Berlin, 1999, pp. 3–11.CrossRefGoogle Scholar
  222. 219.
    Z. Pawlak, Rough sets, rough functions and rough calculus, in: S.K. Pal, A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision Making, Springer-Verlag, Singapore, 1999, pp. 99–109.Google Scholar
  223. 220.
    Z. Pawlak, Logic, Probability and Rough Sets, in: J. Karhumaki, H. Maurer, G. Paun, and G. Rozenberg (eds.), Jewels are Forever. Contributions to Theoretical Computer Science in Honor of Arto Salomaa, Springer-Verlag, Berlin, 1999, pp. 364–373.CrossRefGoogle Scholar
  224. 221.
    Z. Pawlak, Decision rules, Bayes’ rule, and rough sets, in: Proceedings: the 7th International Workshop on rough Sets, Fuzzy Sets, Data Mining and Granular-Soft computing (RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, pp. 1–9.Google Scholar
  225. 222.
    Z. Pawlak, An inquiry into anatomy of conflicts, Journal of Information Sciences 109, 1998, pp. 65–78.MathSciNetCrossRefGoogle Scholar
  226. 223.
    Z. Pawlak, Sets, fuzzy sets, and rough sets, in: Proceedings: Fuzzy–Neuro Systems–Computational Intelligence, Muenchen, Germany, March 18–20, 1998, pp. 1–9.Google Scholar
  227. 224.
    Z. Pawlak, Reasoning about data-a rough set perspective, in: Proceedings: First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 25–34.CrossRefGoogle Scholar
  228. 225.
    Z. Pawlak, Rough sets theory and its applications to data analysis, Cybernetics and Systems 29, 1998, pp. 661–688.MATHCrossRefGoogle Scholar
  229. 226.
    Z. Pawlak, Rough set elements, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methods and Applications, Physica-Verlag, Heidelberg, 1998, pp. 10–30.Google Scholar
  230. 227.
    Z. Pawlak, Rough Modus Ponens, in: Proceedings: the 7th Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1162–1165.Google Scholar
  231. 228.
    Z. Pawlak, Rough set approach to knowledge-based decision support, European Journal of Operational Research 29 (3), 1997, pp. 1–10.Google Scholar
  232. 229.
    Z. Pawlak, Rough sets and Data Mining, in: Proceedings: the International Conference on Intelligent Processing and Manufacturing Materials, Gold Coast, Australia, 1997, pp. 1–5.Google Scholar
  233. 230.
    Z. Pawlak, Rough sets, in: T.Y. Lin, N. Cercone (eds.), Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Dordrecht, 1997, pp. 3–8.CrossRefGoogle Scholar
  234. 231.
    Z. Pawlak, Rough real functions and rough controllers, in: T.Y. Lin, N. Cercone (eds.), Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Dordrecht, 1997, pp. 139–147.CrossRefGoogle Scholar
  235. 232.
    Z. Pawlak, Conflict analysis, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), Aachen, Germany, September 9–11, Verlag Mainz, Aachen, 1997, pp. 15891591.Google Scholar
  236. 233.
    Z. Pawlak, Rough sets and their applications,Proceedings: Fuzzy Sets 97, Dortmund, Germany, 1997.Google Scholar
  237. 234.
    Z. Pawlak, Vagueness—a rough set view, in: Structures in Logic and Computer Science, LNCS 1261, Springer—Verlag, Berlin, 1997, pp. 106117.Google Scholar
  238. 235.
    Z. Pawlak, Data analysis with rough sets, in: Proceedings: CODATA’96, Tsukuba, Japan, October 1996.Google Scholar
  239. 236.
    Z. Pawlak, Rough sets, rough relations and rough functions, in: Fundamenta Informaticae 27(2–3), 1996, pp. 103–108.Google Scholar
  240. 237.
    Z. Pawlak, Data versus Logic: A rough set view, in: Proceedings: the 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), Tokyo, November 1996, pp. 1–8.Google Scholar
  241. 238.
    Z. Pawlak, Rough sets: Present state and perspectives, in: Proceedings: the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’96), Granada, Spain, July 1996, pp. 1137–1145.Google Scholar
  242. 239.
    Z. Pawlak, Some remarks on explanation of data and specification of processes, Bulletin of International Rough Set Society 1 (1), 1996, pp. 1–4.Google Scholar
  243. 240.
    Z. Pawlak, Why rough sets?, in: Proceedings: the 5th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’96), New Orleans, Louisiana, September 1996, pp. 738–743.CrossRefGoogle Scholar
  244. 241.
    Z. Pawlak, Rough Sets and Data Analysis, in: Proceedings: the 1996 Asian Fuzzy Systems Symposium–Soft Computing in Intelligent Systems and Information Processing, Kenting, Taiwan ROC, December 1996, pp. 1–6.Google Scholar
  245. 242.
    Z. Pawlak, On some Issues Connected with Indiscernibility, in: G. Paun (ed.), Mathematical Linguistics and Related Topics, Editura Academiei Romane, Bucure§ti, 1995, pp. 279–283.Google Scholar
  246. 243.
    Z. Pawlak, Rough sets, in: Proceedings of ACM: Computer Science Conference, Nashville TN, February 28-March 2, 1995, pp. 262–264.Google Scholar
  247. 244.
    Z. Pawlak, Rough real functions and rough controllers, in: Proceedings: the Workshop on Rough Sets and Data Mining at 23rd Annual Computer Science Conference, Nashville TN, March 1995, pp. 58–64.Google Scholar
  248. 245.
    Z. Pawlak, Vagueness and uncertainty: A Rough set perspective, Computational Intelligence: An International Journal 11(2)a special issue: W. Ziarko (ed.)), pp. 227–232.Google Scholar
  249. 246.
    Z. Pawlak, Rough set approach to knowledge-based decision support, in: Towards Intelligent Decision Support. Semi—Plenary Papers: the 14th European Conference of Operations Research — 20th Anniversary of EURO, Jerusalem, Israel, July 1995.Google Scholar
  250. 247.
    Z. Pawlak, Rough set theory, in:Proceedings: the 2nd Annual Joint Conference on Information Sciences (JCIS’95), Wrightsville Beach NC, September 28-October 1, 1995, pp. 312–314.Google Scholar
  251. 248.
    Z. Pawlak, Rough sets: Present state and further prospects, in: T. Y. Lin and A. M. Wildberger (eds.), Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils Inc., San Diego CA, 1995, pp. 78–85.Google Scholar
  252. 249.
    Z. Pawlak, Hard and soft sets, in: W. Ziarko (ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’93), Workshops in Computing, Springer-Verlag and British Computer Society, Berlin and London, 1994, pp. 130–135.CrossRefGoogle Scholar
  253. 250.
    Z. Pawlak, Knowledge and uncertainty–A rough sets approach, in: Proceedings: Incompleteness and Uncertainty in Information Systems; SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems, Concordia Univ., Montreal, Canada,1993; also in: W. Ziarko (ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery (RSKD’ 93 ), Workshops in Computing, Springer-Verlag and British Computer Society, Berlin and London, 1994, pp. 34–42.Google Scholar
  254. 251.
    Z. Pawlak, An inquiry into vagueness and uncertainty, in: Proceedings: the 3rd International Workshop on Intelligent Information Systems, Wigry, Poland, June 1994, Institute of Computer Science, Polish Academy of Sciences, Warsaw, 1994, pp. 338–359.Google Scholar
  255. 252.
    Z. Pawlak, Rough sets: Present state and further prospects, in: Proceedings: the 3rd International Workshop on Rough Sets and Soft Computing (RSSC94), San Jose, California, November 10–12, pp. 3–5.Google Scholar
  256. 253.
    Z. Pawlak, Rough sets and their applications, Microcomputer Applications 13 (2), 1994, pp. 71–75.Google Scholar
  257. 254.
    Z. Pawlak, Anatomy of conflict, Bull. of the European Association for Theoretical Computer Science 50, 1993, pp. 234–247.MATHGoogle Scholar
  258. 255.
    Z. Pawlak, Rough sets. Present state and the future, in: Proceedings: the First International Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz–Poznan, Poland, September 1992, pp. 51–53.Google Scholar
  259. 256.
    Z. Pawlak, E. Czogala, and A. Mrôzek, Application of a rough fuzzy controller to the stabilization of an inverted pendulum, in: Proceedings: the 2nd European Congress on Intelligent Techniques and Soft Computing (EUFIT’94), Aachen, Germany, Verlag Mainz, Aachen, pp. 1403–1406.Google Scholar
  260. 257.
    Z. Pawlak, E. Czogala and A. Mrôzek, The idea of a rough fuzzy controller and its applications to the stabilization of a pendulum-car system, Fuzzy Sets and Systems 72, 1995, pp. 61–73.CrossRefGoogle Scholar
  261. 258.
    Z. Pawlak, J.W. Grzymala-Busse, W. Ziarko, and R. Słowiński, Rough sets, Communications of the ACM 38 /11, 1995, pp. 88–95.CrossRefGoogle Scholar
  262. 259.
    Z. Pawlak, A.G. Jackson, and S.R. LeClair, Rough sets and the discovery of new materials, Journal of Alloys and Compounds, 1997, pp. 1–28.Google Scholar
  263. 260.
    Z. Pawlak and T. Munakata, Rough control: Application of rough set theory to control, in: Proceedings: 4th European Congress on Intelligent Techniques and Soft Computing (EUFIT’96), Aachen, Germany, Verlag Mainz, Aachen, 1996, pp. 209–218.Google Scholar
  264. 261.
    Z. Pawlak and A. Skowron, Helena Rasiowa and Cecylia Rauszer’s research on logical foundations of Computer Science, in: A. Skowron (ed.), Logic, Algebra and Computer Science. Helena Rasiowa and Cecylia Rauszer in Memoriam, Bulletin of the Section of Logic 25 (3–4), 1996 (a special issue), pp. 174–184.Google Scholar
  265. 262.
    Z. Pawlak and A. Skowron, Rough membership functions, in: R.R. Yaeger, M. Fedrizzi, and J. Kacprzyk (eds.), Advances in the Dempster—Shafer Theory of Evidence, John Wiley and Sons Inc., New York, 1994, pp. 251–271.Google Scholar
  266. 263.
    Z. Pawlak and A. Skowron, Rough membership functions: A tool for reasoning with uncertainty, in: C. Rauszer (ed.),Algebraic Methods in Logic and Computer Science, Banach Center Publications 28, Polish Academy of Sciences, Warsaw, 1993, pp. 135–150.Google Scholar
  267. 264.
    Z. Pawlak and A. Skowron, A rough set approach for decision rules generation, in: Proceedings: the Workshop W12: The Management of Uncertainty in AI at the 13th IJCAI, Chambery Savoie, France, August 30, 1993.Google Scholar
  268. 265.
    Z. Pawlak and R. Słowiński, Decision analysis using rough sets, International Transactions in Operational Research 1 (1), 1994, pp. 107–114.MATHCrossRefGoogle Scholar
  269. 266.
    Z. Pawlak and R. Słowiński, Rough set approach to multi-attribute decision analysis, European Journal of Operational Research 72, 1994, pp. 443–45.MATHCrossRefGoogle Scholar
  270. 267.
    W. Pedrycz, Shadowed sets: bridging fuzzy and rough sets, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999, pp. 179–199.Google Scholar
  271. 268.
    J. F. Peters, L. Han, and S. Ramanna, Rough neural computing in signal processing, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 493–513.MathSciNetGoogle Scholar
  272. 269.
    J. E. Peters, W. Pedrycz, S. Ramanna, A. Skowron, and Z. Suraj, Approximate real - time decision making: Concepts and rough Petri net models, Intern. Journal Intelligent Systems, 14(8), 1999, pp. 805840.Google Scholar
  273. 270.
    J. E. Peters and S. Ramanna, A rough set approach to assessing software quality: concepts and rough Petri net models, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision—Making, Springer-Verlag, Singapore, 1999, pp. 349–380.Google Scholar
  274. 271.
    J. E. Peters, S. Ramanna, A. Skowron, and Z. Suraj, Graded transitions in rough Petri nets, in: Proceedings: the 7th European Congress on Intelligent Techniques and Soft Computing (EUFIT’99), Aachen, Germany, September 1999.Google Scholar
  275. 272.
    J. F. Peters, A. Skowron, and Z. Suraj, An application of rough set methods in control design, Fundamenta Inforcaticae, 43, 2000, pp. 269–290.MathSciNetMATHGoogle Scholar
  276. 273.
    J. E. Peters, A. Skowron, and Z. Suraj, An application of rough set methods in control design, in: Proceedings: the Workshop on Con-currency, Specification and Programming (CSP’99), Warsaw, Poland, September 1999, pp. 214–235.Google Scholar
  277. 274.
    J. E. Peters, A. Skowron, Z. Suraj, S. Ramanna, and A. Paryzek, Modeling real-time decision-making systems with rough fuzzy Petri nets, in: Proceedings: the Sixth European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, pp. 985–989.Google Scholar
  278. 275.
    L. Polkowski, On connection synthesis via rough mereology, Fundamenta Informaticae, 46, 2001, pp. 83–96.MathSciNetMATHGoogle Scholar
  279. 276.
    L. Polkowski, Approximate mathematical morphology. Rough set approach, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999, pp. 151–162.Google Scholar
  280. 277.
    L. Polkowski, Rough set approach to mathematical morphology: Approximate compression of data, in: Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge–Based Systems (IPMU’98), La Sorbonne, Paris, France, July, pp. 1183–1189.Google Scholar
  281. 278.
    L. Polkowski and M. Semeniuk-Polkowska, Towards usage of natural language in approximate computation: A granular semantics employing formal languages over mereological granules of knowledge, Scheda Informaticae (Fasc. Jagiellonian University), 10, 2000, pp. 131–145.Google Scholar
  282. 279.
    L. Polkowski and M. Semeniuk-Polkowska, Concerning the Zadeh idea of computing with words: Towards a formalization, in: Proceedings: Workshop on Robotics, Intelligent Control and Decision Support Systems, Polish-Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 62–67.Google Scholar
  283. 280.
    L. Polkowski and A. Skowron, Rough mereology in information systems with applications to qualitative spatial reasoning, Fundamenta Informaticae, 43, 2000, pp. 291–320.MathSciNetMATHGoogle Scholar
  284. 281.
    L. Polkowski and A. Skowron, Towards adaptive calculus of granules, in: L.A. Zadeh and J. Kacprzyk (eds.), Computing with Words in Information/Intelligent Systems, Physica-Verlag, Heidelberg, 1999, pp. 201–228.CrossRefGoogle Scholar
  285. 282.
    L. Polkowski and A. Skowron, Grammar systems for distributed synthesis of approximate solutions extracted from experience, in: Gh. Paun, A.Salomaa (eds.), Grammar Systems for Multi-agent Systems, Gordon and Breach Science Publishers, Amsterdam, 1999, pp. 316–333.Google Scholar
  286. 283.
    L. Polkowski and A. Skowron, Rough mereology and analytical morphology, in: E. Orlowska (ed.), Incomplete Information: Rough Set Analysis, Physica-Verlag, Heidelberg, 1998, pp. 399–437.Google Scholar
  287. 284.
    L. Polkowski and A. Skowron, Rough sets: A perspective, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 31–56.CrossRefGoogle Scholar
  288. 285.
    L. Polkowski and A. Skowron, Introducing the book, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 3–9.CrossRefGoogle Scholar
  289. 286.
    L. Polkowski and A. Skowron, Introducing the book, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 1–9.CrossRefGoogle Scholar
  290. 287.
    L. Polkowski and A. Skowron, Rough mereological foundations for design, analysis, synthesis, and control in distributed systems, Information Sciences. An International Journal 104(1–2), Elsevier Science, New York, 1998, pp. 129–156.Google Scholar
  291. 288.
    L. Polkowski and A. Skowron, Rough mereological approach–A survey, Bulletin of International Rough Set Society 2 (1), 1998, pp. 1–13.MathSciNetGoogle Scholar
  292. 289.
    L. Polkowski and A. Skowron, Rough mereological formalization, in: W. Pedrycz and J. F. Peters III (eds.), Computational Intelligence and Software Engineering, World Scientific, Singapore, 1998, pp. 237–267.CrossRefGoogle Scholar
  293. 290.
    L. Polkowski and A. Skowron, Towards adaptive calculus of granules, in: Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence (WCCI’98), Anchorage, Alaska, May 1998, pp. 111–116.Google Scholar
  294. 291.
    L. Polkowski and A. Skowron, Synthesis of complex objects: Rough mereological approach, in: Proceedings: Workshop W8 on Synthesis of Intelligent Agents from Experimental Data (at ECAI’98), Brighton, UK, August 1998, pp. 1–10.Google Scholar
  295. 292.
    L. Polkowski and A. Skowron, Calculi of granules for adaptive distributed synthesis of intelligent agents founded on rough mereology, in: Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Germany, Verlag Mainz, Aachen, 1998, pp. 90–93.Google Scholar
  296. 293.
    L. Polkowski and A. Skowron, Towards information granule calculus, in: Proceedings: the Workshop on Concurrency, Specification and Programming (CSP’98), Berlin, Germany, September 1998, Humboldt University Berlin, Informatik Berichte 110, pp. 176–194.Google Scholar
  297. 294.
    L. Polkowski and A. Skowron, Synthesis of decision systems from data tables, in: T.Y. Lin, N. Cercone (eds.), Rough sets and data mining: Analysis of imprecise data, Kluwer Academic Publishers, Dordrecht, 1997, pp. 259–299.Google Scholar
  298. 295.
    L. Polkowski and A. Skowron, Decision algorithms: A survey of rough set theoretic methods, Fundamenta Informaticae 30 (3–4), 1997, pp. 345–358.MathSciNetMATHGoogle Scholar
  299. 296.
    L. Polkowski and A. Skowron, Approximate reasoning in distributed systems, in: Proceedings of the Fifth European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), Aachen, Germany, Verlag Mainz, Aachen, 1997, pp. 1630–1633.Google Scholar
  300. 297.
    L. Polkowski and A. Skowron, Mereological foundations for approximate reasoning in distributed systems (plenary lecture), in: Proceedings of the Second Polish Conference on Evolutionary Algorithms and Global Optimization, Rytro, September 1997, Warsaw University of Technology Press, 1997, pp. 229–236.Google Scholar
  301. 298.
    L. Polkowski and A. Skowron, Adaptive decision—making by systems of cooperative intelligent agents organized on rough mereological principles, Intelligent Automation and Soft Computing, An International Journal 2 (2), 1996, pp. 121–132.MathSciNetGoogle Scholar
  302. 299.
    L. Polkowski and A. Skowron, Rough mereology: A new paradigm for approximate reasoning, Intern. Journal Approx. Reasoning 15 (4), 1996, pp. 333–365.MathSciNetMATHCrossRefGoogle Scholar
  303. 300.
    L. Polkowski and A. Skowron, Analytical morphology: Mathematical morphology of decision tables, Fundamenta Info i rnaticae 27 (2–3), 1996, pp. 255–271.MathSciNetMATHGoogle Scholar
  304. 301.
    L. Polkowski and A. Skowron, Rough mereological controller, in:Proceedings of The Fourth European Congress on Intelligent Techniques and Soft Computing (EUFIT’96), Aachen, Germany, September 1996, Verlag Mainz, Aachen, 1996, pp. 223–227.Google Scholar
  305. 302.
    L. Polkowski and A. Skowron, Learning synthesis scheme in intelligent systems, in: Proceedings: the 3rd International Workshop on Multi—strategy Learning (MSL-96), Harpers Ferry, West Virginia, May 1996, George Mason University and AAAI Press 1996, pp. 57–68.Google Scholar
  306. 303.
    L. Polkowski and A. Skowron, Implementing fuzzy containment via rough rough inclusions: rough mereological approach to distributed problem solving, in: Proceedings: the 4th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’96), New Orlean LA, September 1996, pp. 1147–1153.CrossRefGoogle Scholar
  307. 304.
    L. Polkowski, A. Skowron, and J. Komorowski, Approximate case-based reasoning: A rough mereological approach, in: Proceedings: the.4th German Workshop on Case-Based Reasoning. System Development and Evaluation, Berlin, Germany, April 1996, Informatik Berichte 55, Humboldt University, Berlin, pp. 144–151.Google Scholar
  308. 305.
    B. Prçdki, R. Słowiński, J. Stefanowski, R. Susmaga, and S. Wilk, ROSE — software implementation of the rough set theory, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98),Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 605–608.Google Scholar
  309. 306.
    M. Quafafou, a—RST: A generalization of Rough Set Theory, Information Systems, 1999, to appear.Google Scholar
  310. 307.
    M. Quafafou, Learning flexible concepts from uncertain data, in: Proceedings: the 10th International Symposium on Methodologies for Intelligent Systems (ISMIS’97), Charlotte NC, 1997.Google Scholar
  311. 308.
    M. Quafafou and M. Boussouf, Generalized rough sets based feature selection, Intelligent Data Analysis Journal 4 (1), 1999.Google Scholar
  312. 309.
    M. Quafafou and M. Boussouf, Induction of strong feature subsets, in: Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery, Trondheim, Norway, June 1997, LNAI 1263, Springer—Verlag, Berlin, 1997.Google Scholar
  313. 310.
    S. Radev, Argumentation systems,Fundamenta Informaticae 28, 1996, pp. 331–346.MathSciNetMATHGoogle Scholar
  314. 311.
    Z. W. Ras, Discovering rules in information trees, in: Proceedings: Principles of Data Mining and Knowledge Discovery (PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer—Verlag, Berlin, 1999, pp. 518–523.Google Scholar
  315. 312.
    Z. W. Ras, Intelligent query answering in DAKS, in: O. Pons, M. A. Vila, and J. Kacprzyk (eds.), Knowledge Management in Fuzzy Databases, Physica—Verlag, Heidelberg, 1999, pp. 159–170.Google Scholar
  316. 313.
    Z. W. Ras, Answering non-standard queries in distributed knowledge—based systems, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica Verlag, Heidelberg, 1998, pp. 98–108.CrossRefGoogle Scholar
  317. 314.
    Z. W. Ras, Handling queries in incomplete CKBS through knowledge discovery, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 194–201.CrossRefGoogle Scholar
  318. 315.
    Z. W. Ras, Knowledge discovery objects and queries in distributed knowledge systems, in: Proceedings: Artificial Intelligence and Symbolic Computation(AISC’98), LNAI 1476, Springer—Verlag, Berlin, 1998, pp. 259–269.CrossRefGoogle Scholar
  319. 316.
    Z. W. Ras and A. Bergmann, Maintaining soundness of rules in distributed knowledge systems, in: Proceedings: the Workshop on Intelligent Information Systems (IIS’98), Malbork, Poland, June 1998, Polish Academy of Sciences, Warsaw, 1998, pp. 29–38.Google Scholar
  320. 317.
    Z. W. Ras and J. M. Zytkow, Mining for attribute definitions in a distributed two-layered DB system, Journal of Intelligent Information Systems 14 (2–3), 2000, in print.Google Scholar
  321. 318.
    Z. W. Ras and J. M. Zytkow, Mining distributed databases for attribute definitions, in: Proceedings: SPIE. Data Mining and Knowledge Discovery: Theory, Tools, and Technology, Orlando, Florida, April 1999, pp. 171–178.Google Scholar
  322. 319.
    Z. W. Ras and J. M. Zytkow, Discovery of equations and the shared operational semantics in distributed autonomous databases, in: Proceedings: Methodologies for Knowledge Discovery and Data Mining (PAKKD’99), Beijing, China, 1999, LNAI 1574, Springer-Verlag, Berlin, 1999, pp. 453–463.CrossRefGoogle Scholar
  323. 320.
    L. Rossi, R. Słowiński, and R. Susmaga, Rough set approach to evaluation of storm water pollution, International Journal of Environment and Pollution, to appear.Google Scholar
  324. 321.
    L. Rossi, R. Słowiński, and R. Susmaga, Application of the rough set approach to evaluate storm water pollution, in: Proceedings: the 8th International Conference on Urban Storm Drainage (8th ICUSD), Sydney, Australia, 1999, vol. 3, pp. 1192–1200.Google Scholar
  325. 322.
    H.Sakai, Some issues on non—deterministic knowledge bases with incomplete and selective information, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 424–431.CrossRefGoogle Scholar
  326. 323.
    H. Sakai, Another fuzzy Prolog, in: Proceedings: The Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), Tokyo, November 1996, pp. 261–268.Google Scholar
  327. 324.
    H. Sakai and A. Okuma, An algorithm for finding equivalence relations from tables with non—deterministic information, in: Proceedings: the 7th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing (RSFDGrC99), LNAI 1711, Springer—Verlag, Berlin, 1999, pp. 64–72.Google Scholar
  328. 325.
    M. Semeniuk—Polkowska, On Applications of Rough Set Theory in Humane Sciences (in Polish), Warsaw University Press, Warsaw, 2000.Google Scholar
  329. 326.
    M. Semeniuk—Polkowska, On Rough Set Theory in Library Sciences (in Polish), Warsaw University Press, Warsaw, 1996.Google Scholar
  330. 327.
    V. I. Shevtchenko, On the depth of decision trees for diagnosis of non—elementary faults in circuits (in Russian), in: Proceedings: the 9th Workshop on Synthesis and Complexity of Control Systems, Nizhny Novgorod, Russia, 1998, Moscow State University Publishers, Moscow, 1999, pp. 94–98.Google Scholar
  331. 328.
    V. I. Shevtchenko, On complexity of non—elementary fault detection in circuits (in Russian), in: Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, p. 254.Google Scholar
  332. 329.
    V. I. Shevtchenko, On complexity of confused connection diagnosis in circuits (in Russian), in: Proceedings: the 9th All—Russian Conference on Mathematical Methods of Pattern Recognition, Moscow, Russia, 1999, pp. 129–131.Google Scholar
  333. 330.
    V. I. Shevtchenko, On the depth of decision trees for diagnosing of nonelementary faults in circuits, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 517–520.Google Scholar
  334. 331.
    V. I. Shevtchenko, On complexity of “OR” (“AND”)—closing detection in circuits (in Russian), in: Proceedings: the International Conference on Discrete Models in Theory of Control Systems, Moscow, Russia, 1997 pp. 61–62.Google Scholar
  335. 332.
    V. I. Shevtchenko, On complexity of “OR” (“AND”)—closing diagnosis in circuits (in Russian), in: Proceedings: the 8th All-Russian Conference on Mathematical Methods of Pattern Recognition, Moscow, Russia, 1997, pp. 125–126.Google Scholar
  336. 333.
    A. Skowron and J. Stepaniuk, Information granules: Towards foundations for spatial and temporal reasoning,Journal of Indian Science Academy, in print.Google Scholar
  337. 334.
    A. Skowron and J. Stepaniuk, Information granules in distributed systems, in: Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing (RSFDGrC’99), Ube — Yamaguchi, Japan, November 1999, Lecture Notes in Artificial Intelligence 1711, Springer—Verlag, Berlin, 1999, pp. 357–365.Google Scholar
  338. 335.
    A. Skowron and J. Stepaniuk, Towards discovery of information granules, in: Proceedings: Principles of Data Mining and Knowledge Discovery (PKDD’99), Prague, the Czech Republic, September 1999, LNAI 1704, Springer-Verlag, Berlin, 1999, pp. 542–547.Google Scholar
  339. 336.
    A. Skowron and J. Stepaniuk, Information granules and approximation spaces, in: Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge — Based Systems (IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 13541361.Google Scholar
  340. 337.
    A. Skowron and J. Stepaniuk, Information Reduction Based on Constructive Neighborhood Systems, in: Proceedings: the 5th International Workshop on Rough Sets Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, October 1997, pp. 158–160.Google Scholar
  341. 338.
    A. Skowron and J. Stepaniuk, Constructive information granules, in: Proceedings: the 15th IMACS World Congress on Scientific Computation, Modeling and Applied Mathematics, Berlin, Germany, August 1997; also in: Artificial Intelligence and Computer Science 4, pp. 625630.Google Scholar
  342. 339.
    A. Skowron and J. Stepaniuk, Tolerance approximation spaces, Fundamenta Informaticae 27 (2–3), 1996, pp. 245–253.MathSciNetMATHGoogle Scholar
  343. 340.
    A. Skowron, J. Stepaniuk, and S. Tsumoto, Information granules for spatial reasoning, Bulletin Intern. Rough Set Society 3 (4), 1999, pp. 147–154.Google Scholar
  344. 341.
    A. Skowron and Z. Suraj, A parallel algorithm for real-time decision making: A rough set approach,Journal of Intelligent Information Systems 7, 1996, pp. 5–28.CrossRefGoogle Scholar
  345. 342.
    K. Słowiński and J. Stefanowski, Medical information systems - problems with analysis and ways of solutions, in: S. K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999, pp. 301.Google Scholar
  346. 343.
    R. Słowiński, Rough set data analysis–a new way of solving some decision problems in transportation, Proceedings: Modeling and Management in Transportation (MMT’99), Krakow–Poznan, October 1999, pp. 63–66.Google Scholar
  347. 344.
    R. Słowiński, Multi-criterial decision support based on rules induced by rough sets (in Polish), in: T.Trzaskalik (ed.),Metody i Zastosowania Badari Operacyjnych, Part 2, Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowice, 1998, pp. 19–39.Google Scholar
  348. 345.
    R. Słowiński and J. Stefanowski, Handling inconsistency of information with rough sets and decision rules, in: Proceedings: Intern. Conference on Intelligent Techniques in Robotics, Control and Decision Making, Polish—Japanese Institute of Information Technology, Warsaw, February 1999, pp. 74–81.Google Scholar
  349. 346.
    R. Słowiński and J. Stefanowski, Rough family — software implementation of the rough set theory, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica-Verlag, Heidelberg, 1998, pp. 581–586.Google Scholar
  350. 347.
    R. Słowiński, J. Stefanowski, S. Greco, and B. Matarazzo, Rough sets processing of inconsistent information in decision analysis, Control and Cybernetics, to appear.Google Scholar
  351. 348.
    R. Słowiński and D. Vanderpooten, A generalized definition of rough approximations based on similarity,IEEE Transactions on Data and Knowledge Engineering, to appear.Google Scholar
  352. 349.
    R. Słowiński, C. Zopounidis, A. I. Dimitras, and R. Susmaga, Rough set predictor of business failure, in: R. A. Ribeiro, H.-J. Zimmermann, R. R. Yager, and J. Kacprzyk (eds.), Soft Computing in Financial Engineering, Physica—Verlag, Heidelberg, 1999, pp. 402–424.Google Scholar
  353. 350.
    J. Stefanowski and A. Tsoukias, Incomplete information tables and rough classification, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 545–566.Google Scholar
  354. 351.
    J. Stepaniuk, Rough set based data mining in diabetes mellitus data table, in: Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT’98), Aachen, Germany, September 1998, pp. 980–984; for extended version see:: Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer—Verlag, Berlin, 1999.Google Scholar
  355. 352.
    J. Stepaniuk, Optimizations of rough set model, Fundamenta Informaticae 36 (2–3), 1998, pp. 265–283.MathSciNetMATHGoogle Scholar
  356. 353.
    J. Stepaniuk, Rough relations and logics, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 248–260.Google Scholar
  357. 354.
    J. Stepaniuk, Approximation spaces, reducts and representatives, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 109–126.CrossRefGoogle Scholar
  358. 355.
    J. Stepaniuk, Approximation spaces in extensions of rough set theory, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 290–297.Google Scholar
  359. 356.
    J. Stepaniuk, Rough sets similarity based learning, in:Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’ 97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 1634–1639.Google Scholar
  360. 357.
    J. Stepaniuk, Similarity relations and rough set model, in: Proceedings: the International Conference MENDEL97, Brno, the Czech Republic, June 1997.Google Scholar
  361. 358.
    J. Stepaniuk, Attribute discovery and rough sets, in: Proceedings:the First European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD’97), Trondheim, Norway, June 1997, LNAI 1263, Springer—Verlag, Berlin, 1997, pp. 145–155.Google Scholar
  362. 359.
    J. Stepaniuk, Searching for optimal approximation spaces, in:Proceedings: the 6th International Workshop on Intelligent Information Systems (ISMIS’ 97 ), Zakopane, Poland, June 1997, Publ. Institute of Computer Science, Polish Academy of Sciences, pp. 86–95.Google Scholar
  363. 360.
    Z. Suraj, An application of rough sets and Petri nets to controller design, in: Workshop on Robotics, Intelligent Control and Decision Support Systems, Polish-Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 86–96.Google Scholar
  364. 361.
    Z. Suraj, The synthesis problem of concurrent systems specified by dynamic information systems, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 418–448.CrossRefGoogle Scholar
  365. 362.
    Z. Suraj, Reconstruction of cooperative information systems under cost constraints: A rough set approach,Journal of Information Sciences 111, 1998, pp. 273–291.MATHCrossRefGoogle Scholar
  366. 363.
    Z. Suraj, Reconstruction of cooperative information systems under Cost constraints: A rough set approach, in: Proceedings: the First International Workshop on Rough Sets and Soft Computing (RSSC’97), Durham NC, March 1997, pp. 364–371.Google Scholar
  367. 364.
    Z. Suraj, Discovery of concurrent data models from experimental tables, Fundamenta Informaticae 28 (3–4), 1996, pp. 353–376.MathSciNetMATHGoogle Scholar
  368. 365.
    R. Susmaga, R. Słowiński, S. Greco, and B. Matarazzo, Computation of reducts for multi-attribute and multi-criteria classification, in: Proceedings: the 7th Workshop on Intelligent Information Systems (IIS’99), Ustron, Poland, June 1999, pp. 154–163.Google Scholar
  369. 366.
    M. Szczuka, Refining decision classes with neural networks, in: Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge—Based Systems (IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1370–1375.Google Scholar
  370. 367.
    M. Szczuka, Rough Sets and Artificial Neural Networks, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 449–470.CrossRefGoogle Scholar
  371. 368.
    M. Szczuka, Rough set methods for constructing neural networks, in: Proceedings: the 3rd Biennial Joint Conference On Engineering Systems Design Analysis, Session on Expert Systems, Montpellier, France, 1996, pp. 9–14.Google Scholar
  372. 369.
    M. Szczuka, D. Slgzak, and S. Tsumoto, An application of reduct networks to medicine–chaining decision rules, in: Proceedings: the 5th International Workshop on Rough Sets and Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Duke University, Durham NC, USA, 1997, pp. 395–398.Google Scholar
  373. 370.
    P. Synak, Adaptation of decomposition tree to extended data, in: Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Fla., Orlando, 2001, vol. VII, pp. 552–556.Google Scholar
  374. 371.
    D. Slgzak, Foundations of entropy based bayesian networks: Theoretical results rough set based extraction from data, in: Proceedings: the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge—Based Systems (IPMU’00), Madrid, Spain, July 2000, in print.Google Scholar
  375. 372.
    D. lçzak, Normalized decision functions and measures for inconsistent decision tables analysis, Fundamenta Informaticae, in print.Google Scholar
  376. 373.
    D. lçzak, Decomposition and synthesis of decision tables with respect to generalized decision functions, in: S. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag, Singapore, 1999, pp. 110–135.Google Scholar
  377. 374.
    D. lçzak, Decision information functions for inconsistent decision tables analysis, in: Proceedings: the 7th European Congress on Intelligent Techniques Soft Computing (EUFIT’99), Aachen, Germany, p. 127.Google Scholar
  378. 375.
    D. Slgzak, Searching for Dynamic Reducts in Inconsistent Decision Tables, in: Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge—Based Systems (IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1362–1369.Google Scholar
  379. 376.
    D. Slgzak, Searching for frequential reducts in decision tables with uncertain objects, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 52–59.CrossRefGoogle Scholar
  380. 377.
    D. Slgzak, Rough set reduct networks, in: Proceedings: the 5th Intern. Workshop on Rough Sets and Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, 1997, pp. 77–81.Google Scholar
  381. 378.
    D. Slgzak, Attribute set decomposition of decision tables, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), Aachen, Germany, Verlag Mainz, Aachen, 1997, pp. 236–240.Google Scholar
  382. 379.
    D. Slgzak, Decision value oriented decomposition of data tables, in: Proceedings: the 10th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’97), Charlotte NC, October 1997, LNAI 1325, Springer—Verlag, Berlin, 1997, pp. 487–496.Google Scholar
  383. 380.
    D. Slgzak, Approximate reducts in decision tables, in: Proceedings: the 6th International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’96), Granada, Spain, July 1996, pp. 1159–1164.Google Scholar
  384. 381.
    D. Slgzak, Tolerance dependency model for decision rules generation, in: Proceedings: the 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), Tokyo, Japan, November 1996, pp. 131–138.Google Scholar
  385. 382.
    D. Slgzak and M. Szczuka, Hyperplane—based neural networks for real—valued decision tables, in: Proceedings: the 5th International Workshop on Rough Sets Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, 1997, pp. 265268.Google Scholar
  386. 383.
    D. lçzak and J. Wróblewski, Classification algorithms based on linear combinations of features, in: Proceedings: Principles of Data Mining and Knowledge Discovery (PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer-Verlag, Berlin, 1999, pp. 548–553.Google Scholar
  387. 384.
    I. Tentush, On minimal absorbents and closure properties of rough inclusions: new results in rough set theory, Ph.D. Dissertation, supervisor L. Polkowski,Institute of Fundamentals of Computer Science, Polish Academy of Sciences, Warsaw, Poland, 1997.Google Scholar
  388. 385.
    S. Tsumoto, Induction of expert decision rules using rough sets and set—inclusion, in: S.K. Pal and A. Skowron (eds.), Rough Fuzzy Hybridization: A New Trend in Decision—Making, Springer—Verlag, Singapore, 1999, pp. 316–329.Google Scholar
  389. 386.
    S. Tsumoto, Discovery of rules about complications, in: Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing (RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, Lecture Notes in AI 1711, Springer—Verlag, Berlin, 1999, pp. 29–37.Google Scholar
  390. 387.
    S. Tsumoto, Extraction of expert’s decision rules from clinical databases using rough set model, J. Intelligent data Analysis 2 (3), 1998.Google Scholar
  391. 388.
    S. Tsumoto, Automated induction of medical expert system tules from clinical databases based on rough set theory, Information Sciences 112, 1998, pp. 67–84.CrossRefGoogle Scholar
  392. 389.
    V. Uma Maheswari, A. Siromoney, K. M. Mehata, and K. Inoue, The variable precision rough set inductive logic programming model and strings, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 460–471.Google Scholar
  393. 390.
    A. Wakulicz—Deja, M. Boryczka, and P. Paszek, Discretization of continuous attributes on decision system in mitochondrial encephalomyopathies, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, 1998, pp. 483–490.Google Scholar
  394. 391.
    A. Wakulicz—Deja, B. Marszal—Paszek, P. Paszek, and E. Emich—Widera, Applying rough sets to diagnose in children’s neurology, in: Proceedings: the 6th International Conference Information Processing and Management of Uncertainty in Knowledge-Base Systems (IPMU’96), Granada, Spain, 1996, pp. 1463–1468.Google Scholar
  395. 392.
    A. Wakulicz—Deja and P. Paszek, Optimalization of decision problems on medical knowledge bases, in: Proceedings: Intelligent Information Systems VI, Zakopane, Poland, 1997, pp. 204–210.Google Scholar
  396. 393.
    A. Wakulicz—Deja and P. Paszek, Optimalization of decision problems on medical knowledge bases, in: Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 1607–1610.Google Scholar
  397. 394.
    A. Wakulicz—Deja and P. Paszek, Diagnose progressive encephalopathy applying the rough set theory, International Journal of Medical Informatics 46, 1997, pp. 119–127.CrossRefGoogle Scholar
  398. 395.
    A. Wakulicz—Deja and P. Paszek, Optimalization of diagnose in progressive encephalopathy applying the rough set theory, in: Proceedings: the /4th European Congress on Intelligent Techniques and Soft Computing (EUFIT’96), Aachen, Germany, Verlag Mainz, Aachen, 1996, pp. 192–196.Google Scholar
  399. 396.
    A. Wakulicz—Deja, P. Paszek, and B. Marszal—Paszek, Optymalizacja procesu podejmowania decyzji (diagnozy) w medycznych bazach wiedzy (in Polish), in: Proceedings: II Krajowa Konferencja Techniki Informatyczne w Medycynie, Jaszowiec, Poland, 1997, pp. 279–286.Google Scholar
  400. 397.
    H. Wang and Nguyen Hung Son, Text classification using Lattice Machine, in: Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer—Verlag, Berlin, 1999.Google Scholar
  401. 398.
    A. Wasilewska, Topological rough algebras, in: T. Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Dordrecht, 1997, pp. 411–425.CrossRefGoogle Scholar
  402. 399.
    A. Wasilewska, E. Menasalvas, and M. Hadjimichael, A generalization model for implementing a Data Mining system, in: Proceedings: IFSA’99, Taipei, Taiwan, August 1999, pp. 245–251.Google Scholar
  403. 400.
    A. Wasilewska and L. Vigneron, Rough algebras and automated deduction, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 261–275.Google Scholar
  404. 401.
    A. Wasilewska and L. Vigneron, On Generalized rough sets, in: Proceedings: the 5th Workshop on Rough Sets and Soft Computing (RSSC’97) at the 3rd Joint Conference on Information Sciences (JCIS’97), Research Triangle Park NC, March 1997.Google Scholar
  405. 402.
    P. Wojdyllo, Wavelets, rough sets and artificial neural networks in EEG analysis, in: Proceedings: First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, LNAI 1424, Springer—Verlag, Berlin, pp. 444–449.Google Scholar
  406. 403.
    J. Wróblewski, Genetic algorithms in decomposition and classification problem, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 471–487.CrossRefGoogle Scholar
  407. 404.
    J. Wróblewski, Covering with reducts — a fast algorithm for rule generation, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 402–407.Google Scholar
  408. 405.
    J. Wróblewski, A Parallel Algorithm for Knowledge Discovery System, in: Proceedings: the International Conference on Parallel Computing in Electrical Engineering (PARELEC’98), Bialystok, Poland, September 1998, The Press Syndicate of the Technical University of Bialystok, 1998, pp. 228–230.Google Scholar
  409. 406.
    J. Wróblewski, Theoretical Foundations of Order-Based Genetic Algorithms, Fundamenta Inforrnaticae 28 (3–4), 1996, pp. 423–430.MATHGoogle Scholar
  410. 407.
    L. Vigneron, Automated deduction techniques for studying rough algebras, Fundamenta Info, maticae 33 (1), 1998, pp. 85–103.MathSciNetMATHGoogle Scholar
  411. 408.
    L. Vigneron and A. Wasilewska, Rough sets based proofs visualisation, in: Proceedings: the 18th International Conference of the North American Fuzzy Information Processing Society (NAFIPS’99) (invited session on Granular Computing and Rough Sets), New York NY, 1999, pp. 805–808.Google Scholar
  412. 409.
    L. Vigneron and A. Wasilewska, Rough sets congruences and diagrams, in: Proceedings: the 16th European Conference on Operational Research (EURO XVI), Brussels, Belgium, July 1998.Google Scholar
  413. 410.
    L. Vigneron and A. Wasilewska, Rough diagrams, in: Proceedings: the sixth Workshop on Rough Sets, Data Mining and Granular Computing (RSDMGrC’98) at the 4th Joint Conference on Information Sciences (JCIS’98), Research Triangle Park NC, October 1998.Google Scholar
  414. 411.
    L. Vigneron and A. Wasilewska, Rough and modal algebras, in:Proceedings: the International Multi—conference (Computational Engineering in Systems Applications), Symposium on Modelling, Analysis and Simulation (IMACS/IEEE CESA’96), Lille, France, July 1996, pp. 1107–1112.Google Scholar
  415. 412.
    Zhang Qi and Han Zhenxiang, Rough sets: theory and applications, Control Theory and Applications 16(2), 1999, pp. 153–157, S. China Univ. Technology Press, Guangzhou, China.Google Scholar
  416. 413.
    Zhang Qi and Han Zhenxiang,A new method for alarm processing in power systems using rough set theory, Electric Power 31(4), 1998, pp. 32–38, China Electric Power Press, Beijing.Google Scholar
  417. 414.
    Zhang Qi, Han Zhenxiang, and Wen Fushuan, Analysis of Rogers ratio table for transformer fault diagnosis using rough set theory, in: Proceedings: CUS—EPSA 88, Harbin, China, 1998, pp. 386–391.Google Scholar
  418. 415.
    Zhang Qi, Han Zhenxiang, and Wen Fushuan, A new approach for fault diagnosis in power systems based on rough set theory, in: Proceedings: APSCOM’97, Hong Kong, 1997, pp. 597–602.Google Scholar
  419. 416.
    W. Ziarko, Probabilistic decision tables in the variable precision rough set model,Computational Intelligence: An Intern. Journal, 17, 2001, pp. 593–603.Google Scholar
  420. 417.
    W. Ziarko, Decision making with probabilistic decision tables, in:: Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing (RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, Lecture Notes in Artificial Intelligence 1711, Springer—Verlag, Berlin, 1999, pp. 463–471.Google Scholar
  421. 418.
    W. Ziarko, Rough sets as a methodology for data mining, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 554–576.Google Scholar
  422. 419.
    W. Ziarko, KDD—R: rough sets based data mining system, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 598–601.Google Scholar
  423. 420.
    W. Ziarko, Approximation region—based decision tables, in: Proceedings: the First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, June 1998, Lecture Notes in Artificial Intelligence 1424, Springer—Verlag, Berlin, 1998, pp. 178185.Google Scholar
  424. 421.
    C. Zopounidis, R. Slowirnski, M. Doumpos, A.I. Dimitras, and R. Susmaga, Business failure prediction using rough sets — a comparison with multivariate analysis techniques, Fuzzy Economic Review 4, 1999(1), pp. 3–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceUniversity of Wormia and MazuryOlsztynPoland

Personalised recommendations