Rough Sets pp 3-92 | Cite as

# Rough Set Theory: An Introduction

Chapter

## Abstract

In rough set theory, knowledge is interpreted as an ability to classify some objects (cf. [Pawlak82^{a}, 81^{b}]). These objects form a *set* called often a *universe of discourse* and their nature may vary from case to case: they may be e.g. medical patients, processes, participants in a conflict etc., etc.

## Keywords

Soft Computing Decision Table Information Granule Granular Computing Discernibility Matrix
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## Works quoted

- [Bazan00]J. Bazan, H.S. Nguyen, S. H. Nguyen, P. Synak, and J. Wróblewski,
*Rough set algorithms in classification problems*,in: [Polkowski—TsumotoLin], pp. 49–88.Google Scholar - [Bazan98]J.G. Bazan, Nguyen Hung Son, Nguyen Tuan Trung, A. Skowron, and J. Stepaniuk,
*Decision rules synthesis for object classification*,in: [Orlowska98], pp. 23–57.Google Scholar - [Goldberg89]D.E. Goldberg,
*GA in Search*,*Optimisation*,*and Machine Learning*, Addison—Wesley, 1989.Google Scholar - [Greco99]S. Greco, B. Matarazzo, R. Słowiński,
*Fuzzy dominance as basis for rough approximations*, in: Proceedings: the 4th Meeting of the EURO WG on Fuzzy Sets and 2nd Internat. Conf. on Soft and Intelligent Computing, (EUROFUSE-SIC’99), Budapest, Hungary, May 1999, pp. 273–278.Google Scholar - [Greco98]S. Greco, B. Matarazzo, and R. Słowiński,
*On joint use of indiscernibility*,*similarity and dominance in rough approximation of decision classes*, in: Proceedings: the 5th International Conference of the Decision Sciences Institute, Athens, Greece, July 1999, pp. 1380–1382.Google Scholar - [Iwinski87]T. B. Iwiński,
*Algebraic approach to rough sets*, Bull. Polish Acad. Ser. Sci. Math., 35 (1987), pp. 673–683.Google Scholar - [Mitchell98]T. Mitchell, Machine Learning, McGraw—Hill, Boston, 1998.Google Scholar
- [Nguyen Hung Son98]Nguyen Hung Son, From
*optimal hyperplanes to optimal decision trees*, Fundamenta Informaticae, 34 (1–2) (1998), pp. 145–174.Google Scholar - [Orlowska90]E. Orlowska, Kripke semantics for knowledge representation, Studia Logica, 49 (1990), pp. 255–272.MathSciNetMATHCrossRefGoogle Scholar
- [Nguyen—Nguyen98a]Nguyen Sinh Hoa and Nguyen Hung Son,
*Pattern extraction from data*, Fundamenta Informaticae, 34 (1–2) (1998), pp. 129–144.MathSciNetMATHGoogle Scholar - [Nguyen—Nguyen98b]Nguyen Hung Son and Nguyen Sinh Hoa,
*Discretization methods in Data Mining*, in: [Polkowski—Skowron98a], pp. 451–482.Google Scholar - [Nguyen—Nguyen98b]Nguyen Sinh Hoa,
*Regularity analysis and its applications in Data Mining*, in: [Polkowski—Tsumoto—Lin], pp. 289–378.Google Scholar - [Nguyen—Skowron99]Nguyen Hung Son and A. Skowron,
*Boolean reasoning scheme with some applications in Data Mining*, in: Proceedings: Principles of Data Mining and Knowledge Discovery PKDD’99, Prague, Czech Republic, September 1999, LNAI vol. 1704, Springer Verlag, Berlin, 1999, pp. 107–115.Google Scholar - [Novotnÿ—Pawlak89]M. Novotnÿ and Z. Pawlak,
*Algebraic theory of independence in information systems*, Report 51, Institute of Mathematics of the Czechoslovak Academy of Sciences, 1989.Google Scholar - [Novotnÿ—Pawlak881]M. Novotnÿ and Z. Pawlak,
*Partial dependency of attributes*, Bull. Polish Acad. Sci. Math., 36 (1989), pp. 453–458.Google Scholar - [Novotnÿ—Pawlak85a]M. Novotnÿ and Z. Pawlak,
*Characterization of rough top equalities and rough bottom equalities*, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 91–97.MathSciNetMATHGoogle Scholar - [Novotn3’7—Pawlak85b]M. Novotnÿ and Z. Pawlak,
*On rough equalities*, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 99–104.MathSciNetMATHGoogle Scholar - [Novotn3’r—Pawlak85c]M. Novotnÿ and Z. Pawlak,
*Black box analysis and rough top equality*, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 105–113.MathSciNetMATHGoogle Scholar - [Novotnÿ—Pawlak85a]M. Novotnÿ and Z. Pawlak,
*Independence of attributes*, Bull. Polish Acad. Sci. Tech., 33 (1985), pp. 459–465.Google Scholar - [Obtulowicz85]A. Obtulowicz,
*Rough sets and Heyting algebra valued sets*, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 454–476.Google Scholar - [Orlowska89]E. Orlowska,
*Logic for reasoning about knowledge*, Z. Math. Logik u. Grund. d. Math., 35 (1989), pp. 559–572.MathSciNetMATHCrossRefGoogle Scholar - [Orlowska85]E. Orlowska,
*Logic approach to information systems*, Fundamenta Informaticae, 8 (1985), pp. 359–378.MathSciNetMATHGoogle Scholar - [Orlowska84]E. Orlowska,
*Modal logics in the theory of information systems*, Z. Math. Logik u. Grund.d. Math., 30 (1984), pp. 213–222.MathSciNetMATHCrossRefGoogle Scholar - [Orlowska-Pawlak84a]E. Orlowska and Z.
*Pawlak, Logical foundations of knowledge representation*, Reports of the Comp. Centre of the Polish Academy of Sciences, 537, 1984.Google Scholar - [Orlowska-Pawlak841 ]E. Orlowska and Z. Pawlak, Representation of non-deterministic information, Theor. Computer Science, 29 (1984), pp. 27–39.Google Scholar
- [Pagliani98a]P. Pagliani,
*Rough set theory and logic-algebraic structures*, in: [Orlowska98], pp. 109–192.Google Scholar - [Pawlak0l]Z. Pawlak,
*Combining rough sets and Bayes’ rule*, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 401–408.Google Scholar - [Pawlak82a]Z. Pawlak,
*Rough sets*, Intern. J. Comp. Inform. Sci., 11 (1982), pp. 341–356.MathSciNetMATHCrossRefGoogle Scholar - [Pawlak9l]Z. Pawlak,
*Rough Sets. Theoretical Aspects of Reasoning about Data*, Kluwer, Dordrecht, 1991.MATHGoogle Scholar - [Pawlak87a]Z. Pawlak,
*Decision tables-a rough set approach*, Bull. EATCS, 33 (1987), pp. 85–96.MATHGoogle Scholar - [Pawlak87b]Z. Pawlak,
*Rough logic*, Bull. Polish Acad. Sci. Tech., 35 (1987), pp. 253–258.MathSciNetMATHGoogle Scholar - [Pawlak86]Z. Pawlak,
*On decision tables*, Bull. Polish Acad. Sci. Tech., 34 (1986), pp. 553–572.Google Scholar - [Pawlak851.Z. Pawlak,
*On rough dependency of attributes in information systems*, Bull. Polish Acad. Sci. Tech., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar - [Pawlak851.Z. Pawlak,
*Rough sets and decision tables*, LNCS vol. 208, Springer Verlag, Berlin, 1985, pp. 186–196.Google Scholar - [Pawlak8la]Z. Pawlak,
*Information Systems—Theoretical Foundations (in Polish)*, PWN—Polish Scientific Publishers, Warsaw, 1981.Google Scholar - [Pawlak81b]Z. Pawlak,
*Information systems-theoretical foundations*, Information Systems, 6 (1981), pp. 205–218.MATHCrossRefGoogle Scholar - [Pawlak-Rauszer85]Z. Pawlak and C. Rauszer,
*Dependency of attributes in information systems*, Bull. Polish Acad. Sci. Math., 33 (1985), pp. 551–559.MathSciNetMATHGoogle Scholar - [Pomykala88]J. Pomykala and J. A. Pomykala, The Stone algebra of roughGoogle Scholar
- [Pawlak-Skowron94]Z. Pawlak and A. Skowron,
*Rough membership func- tions*, in: R.R. Yaeger, M. Fedrizzi, and J. Kacprzyk, eds., Advances in the Dempster-Schafer Theory of Evidence, Wiley, New York, 1994, pp. 251–271.Google Scholar - [Polkowski93a]L. Polkowski,
*Metric spaces of topological rough sets from countable knowledge bases*, Foundations of Computing and Decision Sciences, 18 (1993), pp. 293–306.MathSciNetMATHGoogle Scholar - [Polkowski93b]L. Polkowski,
*Mathematical morphology of rough sets*, Bull. Polish Acad. Sci. Math., 41 (1993), pp. 241–273.MathSciNetMATHGoogle Scholar - [Polkowski-Polkowski00]L. Polkowski and M.
*Semeniuk-Polkowska*, Towards usage of natural language in approximate computation: a granular semantics employing formal languages over mereological granules of knowledge, Scheda Informaticae (Sci. Fasc. Jagiellonian University), 10 (2000), pp. 131–146.Google Scholar - [Polkowski-Skowron0l]L. Polkowski and A. Skowron,
*Rough mereological calculi of granules: a rough set approach to computation*, Computational Intelligence: An Intern. Journal, 17 (2001), pp. 472–492.MathSciNetGoogle Scholar - [Polkowski-Skowron98a]L. Polkowski and A. Skowron,
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica Verlag, Heidelberg, 1998.CrossRefGoogle Scholar - [Polkowski-Skowron9811 ]L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Studies in Fuzziness and Soft Computing, vol. 19, Physica Verlag, Heidelberg, 1998.Google Scholar - [Polkowski-Tsumoto-Lin00]L. Polkowski, S. Tsumoto, and T. Y. Lin,
*Rough Set Methods and Applications*. New Developments in Knowledge Discovery in Information Systems, Studies in Fuzzines and Soft Computing vol. 56, Physica Verlag, Heidelberg, 2000.sets, Bull. Polish Acad. Ser. Sci. Math., 36 (1988), 495–508.Google Scholar - [Rasiowa—Skowron86a]H. Rasiowa and A. Skowron,
*Rough concept logic*, LNCS vol. 208, Springer Verlag, Berlin, 1986, pp. 288–297.Google Scholar - [Rasiowa—Skowron86b]H. Rasiowa and A. Skowron,
*The first step towards an approximation logic*, J. Symbolic Logic, 51 (1986), p. 509.Google Scholar - [Rasiowa—Skowron86`]H. Rasiowa and A. Skowron,
*Approximation logic*, Proc. Conf. on Mathematical Methods of Specification and Synthesis of Software Systems, Akademie Verlag, Berlin, 1986, pp. 123–139.CrossRefGoogle Scholar - [Rissanen83]J. Rissanen,
*A universal prior for integers and estimation by minimum description length*, The Annals of Statistics, 11 (1983), pp. 416431.Google Scholar - [Skowron89]A. Skowron,
*The implementation of algorithms based on discernibility matrix*, manuscript, 1989.Google Scholar - [Skowron88]A. Skowron,
*On topology in information systems*, Bull. Polish Acad. Sci. Math., 36 (1988), pp. 477–480.MathSciNetMATHGoogle Scholar - [Skowron—Rauszer92]A. Skowron and C. Rauszer,
*The discernibility matrices and functions in information systems*, in: R. Słowiński, ed., Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, Kluwer, Dordrecht, 1992, pp. 311–362.Google Scholar - [Skowron—Stepaniuk96]A. Skowron and J. Stepaniuk,
*Tolerance approximation spaces*, Fundamenta Informaticae, 27 (1996), pp. 245–253.MathSciNetMATHGoogle Scholar - [Słowiński0x]R. Słowiński and D. Vanderpooten,
*A generalized definition of rough approximations based on similarity*, IEEE Transactions on Data and Knowledge Engineering, to appear.Google Scholar - [Stepaniuk00]J. Stepaniuk,
*Knowledge discovery by application of rough set model*, in: [Polkowski—Tsumoto—Lin00], pp. 137–234.Google Scholar - [Slgzak00]D. Slgzak,
*Various approaches to reasoning with frequency based decision redacts: a survey*, in: [Polkowski—Tsumoto—Lin00], pp. 235–288.Google Scholar - [Vakarelov89]D. Vakarelov,
*Modal logics for knowledge representation systems*, Lecture Notes in Computer Science, vol. 363 (1989), Springer Verlag, Berlin, pp. 257–277.Google Scholar

## [A] Books and conference proceedings

- 1.S. K. Pal, L. Polkowski and A. Skowron (eds.),
*Rough—Neuro Computing: Techniques for Computing with Words*, Springer-Verlag, 2002, to appear.Google Scholar - 2.L. Polkowski, S. Tsumoto and T. Y. Lin (eds.),
*Rough Set Methods and Applications*. New Developments in Knowledge Discovery in Information Systems, this Series, vol. 56, Physica—Verlag, Heidelberg, 2001.Google Scholar - 3.S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision—Making*, Springer—Verlag, Singapore, 1999.Google Scholar - 4.L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, this Series, vol. 18, PhysicaVerlag, Heidelberg, 1998.Google Scholar - 5.L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, this Series, vol. 19, Physica—Verlag, Heidelberg, 1998.Google Scholar - 6.T. Y. Lin and N. Cercone (eds.),
*Rough Sets and Data Mining. Analysis of Imprecise Data*, Kluwer Academic Publishers, Dordrecht, 1997.MATHGoogle Scholar - 7.S. Hirano, M. Inuiguchi, and S. Tsumoto (eds.),
*Proceedings of the Int. Workshop on Rough Set Theory and Granular Computing RSTGC’2001*, Bull. Intern. Rough Set Society, 5 (2001); also Lecture Notes in AI, vol. 2253, Springer-Verlag, Berlin, 2002.Google Scholar - 8.W. Ziarko and Y. Y. Yao (eds.),
*Proceedings of 2nd International Conference on Rough Sets and Current Trends in Computing RSCTC’2000*, Technical Report CS-2000–07, University of Regina, Regina, Canada, 2001; also Lecture Notes in AI, vol. 2205, Springer - Verlag, Berlin, 2001.Google Scholar - 9.N. Zhong, A. Skowron, and S. Ohsuga (eds.),
*New Directions in Rough Sets, Data Mining, and Granular-Soft Computing*, Proceedings: the 7th International Workshop (RSFDGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999.Google Scholar - 10.L. Polkowski and A. Skowron (eds.),
*Rough Sets and Current Trends in Computing, Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998.Google Scholar

## [B] Journal and monograph articles, and conference papers

- 1.P. Apostoli and A. Kanda,
*Parts of the Continuum: Towards a modern ontology of science*, to appear in: Poznan Series on the Philosophy of Science and the Humanities.Google Scholar - 2.G. Arora, F. Petry, and T. Beaubouef,
*New information measures for fuzzy sets*, in: Proceeings: the 7th IFSA World Congress, Prague, the Czech Republic, June 1997.Google Scholar - 3.G. Arora, F. Petry, and T. Beaubouef,
*Information measure of type ß under similarity relations*, in: Proceedings: the 6th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’97), Barcelona, Spain, July 1997.Google Scholar - 4.C. Baizân, E. Menasalvas, J. Pena,
*A new approach to efficient calculation of reducts in large databases*, in: Proceedings: the 5th International Workshop on Rough Sets and Soft Computing (RSSC’97) at Proceedings: the 3rd Joint Conference on Information Sciences (JCIS’97), Research Triangle Park NC, March 1997, pp. 340–344.Google Scholar - 5.C. Baizân, E. Menasalvas, J. Pena,
*Using rough sets to mine socioeconomic data*, in: Proceedings: SMC’97, 1997, pp. 567–571.Google Scholar - 6.C. Baizân, E. Menasalvas, J. Pena, S. Milldn, and E. Mesa,
*Rough dependencies as a particular case of correlation: Application to the calculation of approximate reducts*, in: Proceedings: Principles of Data Mining and Knowledge Discovery (PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer-Verlag, Berlin, 1999, pp. 335341.Google Scholar - 7.C. Baizân, E. Menasalvas, J. Pena, and J. Pastrana,
*Integrating KDD algorithms and RDBMS code*, in: Proceedings: First International Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 210–214.Google Scholar - 8.C. Baizân, E. Menasalvas, J. Pena, and J.
*Pastrana, RSDM system*, Bull. Intern. Rough Set Society, 2, 1998, pp. 21–24.Google Scholar - 9.C. Baizân, E. Menasalvas, J. Pena, C. P.
*Peréz and E. Santos*, The lattices of generalizations in a KDD process, in: Proceedings: Cybernetics and Systems’98, 1998, pp. 181–184.Google Scholar - 10.C. Baizân, E. Menasalvas, and A. Wasilewska,
*A model for RSDM Implementation*, in: Proceedings: the First international Conference on Rough Sets and Current Trends in Computing (RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 186196.Google Scholar - 11.M. Banerjee, S. Mitra, and S.K. Pal, Rough Fuzzy MLP: Knowledge encoding and classification,
*IEEE Trans. Neural Networks 9 (6)*, 1998, pp. 1203–1216.CrossRefGoogle Scholar - 12.M. Banerjee and S.K. Pal,
*Roughness of a fuzzy set*, Information Science 93 (3/4), 1996, pp. 235–246.MathSciNetMATHCrossRefGoogle Scholar - 13.W. Bartol, X. Caicedo, and F. Rosselld, Syntactical content of finite approximations of partial algebras, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 408–415.Google Scholar - 14.J.G. Bazan, Approximate reasoning in decision rule synthesis, in:
*Proceedings of the Workshop on Robotics*, Intelligent Control and Decision Support Systems, Polish—Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 10–15.Google Scholar - 15.J.G. Bazan, Discovery of decision rules by matching new objects against data tables, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC-98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 521528.Google Scholar - 16.J.G. Bazan, A comparison of dynamic and non—dynamic rough set methods for extracting laws from decision table, in: L. Polkowski, A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 321–365.Google Scholar - 17.J. G. Bazan, Approximate reasoning methods for synthesis of decision algorithms (in Polish), Ph.D. Dissertation, supervisor A. Skowron, Warsaw University, 1998, pp. 1–179.Google Scholar
- 18.J.G. Bazan, Nguyen Hung Son, Nguyen Tuan Trung, A. Skowron, and J. Stepaniuk, Decision rules synthesis for object classification, in: E. Orlowska (ed.),
*Incomplete Information: Rough Set Analysis, PhysicaVerlag*, Heidelberg, 1998, pp. 23–57.CrossRefGoogle Scholar - 19.T. Beaubouef and R. Lang, Rough set techniques for uncertainty management in automated story generation, in:
*the 36th Annual ACM Southeast Conference, Marietta GA*, April 1998.Google Scholar - 20.T. Beaubouef, F. Petry, and G. Arora, Information measures for rough and fuzzy sets and application to uncertainty in relational databases, in: S. Pal and A. Skowron (eds.),
*Rough-Fuzzy Hybridization: A New Trend in Decision-Making*, Springer-Verlag, Singapore, 1998, pp. 200214.Google Scholar - 21.T. Beaubouef, F. Petry, and G. Arora, Information—theoretic measures of uncertainty for rough sets and rough relational databases,
*Information Sciences*109 (1–4), 1998, pp. 185–195.CrossRefGoogle Scholar - 22.T. Beaubouef, F. Petry, and G. Arora, Information—theoretic measures of uncertainty for rough sets and rough relational databases, in: Proceedings:
*the 5th International Workshop on Rough Sets and Soft Computing*(RSSC’97), Research Triangle Park NC, March 1997.Google Scholar - 23.T. Beaubouef, F. Petry, and J. Breckenridge,
*Rough set based uncertainty management for spatial databases and Geographical Information Systems*, in: Proceedings: Fourth On—line World Conference on Soft Computing in Industrial Applications (WSC4), September 1999, pp. 21–30.Google Scholar - 24.Chien—Chung Chan, Distributed incremental Data Mining fron very large databases: a rough multi—set approach, in:
*Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics*, Orlando, Cybernetics and Informatics, July 2001, vol. VII, pp. 517–522.Google Scholar - 25.Chien-Chung Chan and J. W. Grzymala—Busse, On the lower boundaries in learning rules from examples, in: E. Orlowska (ed.),
*Incomplete Information: Rough Set Analysis*, Physica—Verlag, Heidelberg, 1998, pp. 58–74.CrossRefGoogle Scholar - 26.I. V. Chikalov, On average time complexity of decision trees and branching programs,
*Fundamenta Informaticae*39 (4), 1999, pp. 337–357.MathSciNetMATHGoogle Scholar - 27.I. V. Chikalov, On decision trees with minimal average depth, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 506–512.CrossRefGoogle Scholar - 28.I. V. Chikalov, Bounds on average weighted depth of decision trees depending only on entropy, in:
*Proceedings: the 7th International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems*, La Sorbonne, Paris, France, July 1998, pp. 1190–1194.Google Scholar - 29.B. Chlebus and Nguyen Sinh Hoa, On finding optimal discretization on two attributes, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 537544.Google Scholar - 30.Vhunnian Liu and Ning Zhong, Rough
*problem settings for ILP dealing with imperfect data*, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 446–459.Google Scholar - 31.A. Czyzewski, Soft Processing of Audio Signals, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 147–165.CrossRefGoogle Scholar - 32.A. Czyzewski, Speaker–independent recognition of isolated words using rough sets,
*J. Information Sciences 104*, 1998, pp. 3–14.CrossRefGoogle Scholar - 33.A. Czyzewski, Learning algorithms for audio signal enhancement. Part 2: Implementation of the rough set method for the removal of hiss,
*J. Audio Eng. Soc*. 45 (11), 1997, pp. 931–943.Google Scholar - 34.A. Czyzewski, Speaker-independent recognition of digits–experiments with neural networks, fuzzy logic and rough sets,
*J. Intelligent Automation and Soft Computing*2 (2), 1996, pp. 133–146.Google Scholar - 35.A. Czyzewski and B. Kostek, Tuning the perceptual noise reduction algorithm using rough sets, in: Proceedings:
*the First international Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 467–474.Google Scholar - 36.A. Czyzewski and B. Kostek, Rough set-based filtration of sound applicable to hearing prostheses, In:
*Proceedings: the 4th Intern. Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery*(RSFD’96), Tokyo, Japan, November 1996, pp. 168–175.Google Scholar - 37.A. Czyzewski and B. Kostek, Restoration of old records employing Artificial Intelligence methods, In: Proceedings:
*the LASTED Internat. Conference–Artificial Intelligence*, Expert Systems and Neural Networks, Honolulu, Hawaii, 1996, pp. 372–375.Google Scholar - 38.A. Czyzewski, B. Kostek, H. Skarzynski, and R. Krôlikowski, Evaluation of some properties of the human auditory system using rough sets, In:
*Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, 1998, pp. 965–969.Google Scholar - 39.A. Czyzewski and R. Krôlikowski, Noise reduction in audio signals based on the perceptual coding approach, in: Proceedings:
*the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics*, New Paltz NY, October 1999, pp. 147–150.Google Scholar - 40.A. Czyzewski and R. Krôlikowski, Noise reduction algorithms employing an intelligent inference engine for multimedia applications, in:
*Proceedings: the IEEE 2nd Workshop on Multimedia Signal Processing*, Redondo Beach CA, December 1998, pp. 125–130.Google Scholar - 41.A. Czyzewski, R. Krôlikowski, S. K. Zielinski, and B. Kostek, Echo and noise reduction methods for multimedia communication systems, in: Proceedings:
*the IEEE Signal Processing Society 1999 Workshop on Multimedia Signal Processing*, Copenhagen, Denmark, September 1999, pp. 239–244.Google Scholar - 42.A. Czyzewski, H. Skarzynski, B. Kostek, and R. Krôlikowski, Rough set analysis of electro-stimulation test database for the prediction of post-operative profits in cochlear implanted patients, in:
*Proceedings: the 7th Intern. Workshop on Rough Sets*, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999, pp. 109117.Google Scholar - 43.A. Czyzewski, H. Skariynski, and B. Kostek, Multimedia databases in hearing and speech pathology, in:
*Proceedings: the World Automation Congress*(WAC’98), Anchorage, Alaska, May 1998, pp. IFMIP-052. 1052. 6.Google Scholar - 44.R. Deja, Conflict analysis, in:
*Proceedings: the 7th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’99), Aachen, Germany, September 1999.Google Scholar - 45.S. Demri, A class of decidable information logics,
*Theoretical Computer Science*, 195 (1), 1998, pp. 33–60.MathSciNetMATHCrossRefGoogle Scholar - 46.S. Demri and B. Konikowska, Relative similarity logics are decidable: reduction to FO2 with equality, in:
*Proceedings: JELIA 88, LNAI 1489, Springer-Verlag*, Berlin, 1998, pp. 279–293.Google Scholar - 47.S. Demri and E. Orlowska, Informational representability: Abstract models versus concrete models, in: D. Dubois and H. Prade (eds.),
*Fuzzy sets, Logics and Reasoning about Knowledge*, Kluwer Academic Publishers, Dordrecht, 1999, pp. 301–314.CrossRefGoogle Scholar - 48.S. Demri and E. Orlowska, Informational representability of models for information logics, in: E. Orlowska (ed.),
*Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa*, Physica—Verlag, Heidelberg, 1998, pp. 383–409.Google Scholar - 49.S. Demri, E. Orlowska, and D. Vakarelov, Indiscernibility and complementarity relations in Pawlak’s information systems, in:
*Liber Amicorum for Johan van Benthem’s 50th Birthday*, 1999.Google Scholar - 50.A.I. Dimitras, R. Słowiński, R. Susmaga, and C. Zopounidis: Business failure prediction using rough sets,
*European Journal of Operational Research 114*, 1999, pp. 49–66.CrossRefGoogle Scholar - 51.Ju. V. Dudina and A. N. Knyazev, On complexity of language word recognition generated by context-free grammars with one non-terminal symbol (in Russian),
*Bulletin of Nizhny Novgorod State University. Mathematical Simulation and Optimal Control*19, 1998, pp. 214–223.Google Scholar - 52.A. E. Eiben, T. J. Euverman, W. Kowalczyk, and F. Slisser, Modeling customer retention with statistical techniques, rough data models, and genetic programming, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision-Making*, Springer—Verlag, Singapore, 1999, pp. 330–348.Google Scholar - 53.P. Ejdys and G. Góra, The More We Learn the Less We Know? - On Inductive Learning from Examples, Proceedings:
*the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems*(ISMIS’99), Warsaw, Poland, June 1999, LNAI, Springer-Verlag, Berlin, in print.Google Scholar - 54.L. Goodwin, J. Prather, K. Schlitz, M. A. Iannacchione, M. Hage, W. E. Hammond Sr., and J. W. Grzymala-Busse, Data mining issues for improved birth outcomes,
*Biomedical Sciences Instrumentation*34, 1997, pp. 291–296.Google Scholar - 55.S. Greco, B. Matarazzo, and R. Słowiński, Dominance-based rough set approach to rating analysis,
*Gestion 2000 Magazine*, to appear.Google Scholar - 56.S. Greco, B. Matarazzo, and R. Słowiński,
*Decision rules, in: Encyclopedia of Management, 4th edition*, 2000, to appear.Google Scholar - 57.S. Greco, B. Matarazzo, and R. Słowiński, Rough set processing of vague information using fuzzy similarity relation, in: C. Calude and G. Paun (eds.),
*Finite versus Infinite - Contributions to an Eternal Dilemma*, Springer-Verlag, Berlin, to appear.Google Scholar - 58.S. Greco, B. Matarazzo, and R. Słowiński, Rough approximation of a preference relation by dominance relations,
*European Journal of Operational Research*117, 1999, pp. 63–83.MATHCrossRefGoogle Scholar - 59.S. Greco, B. Matarazzo, and R. Słowiński, The use of rough sets and fuzzy sets in MCDM, in: T. Gal, T. Stewart, and T. Hanne (eds.),
*Advances in Multiple Criteria Decision Making*, Kluwer Academic Publishers, Boston, 1999, Chapter 14: pp. 14. 1–14. 59.Google Scholar - 60.S. Greco, B. Matarazzo, R. Słowiński, Fuzzy dominance as basis for rough approximations, in:
*Proceedings: the 4th Meeting of the EURO WG on Fuzzy Sets and 2nd Internat. Conf. on Soft and Intelligent Computing*, (EUROFUSE-SIC’99), Budapest, Hungary, May 1999, pp. 273–278.Google Scholar - 61.S. Greco, B. Matarazzo, and R. Słowiński, Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems, in:
*Proceedings: New Directions in Rough Sets, Data Mining and Granular-Soft Computing*(RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999, pp. 146–157.CrossRefGoogle Scholar - 62.S. Greco, B. Matarazzo, and R. Słowiński, Fuzzy dominance as a basis for rough approximations, in: Proceedings:
*Workshop Italiano sella Logica Fuzzy*(Wilf’99), Genova, Italy, June 1999, pp. 14–16.Google Scholar - 63.S. Greco, B. Matarazzo, and R. Słowiński, Misurazione congiunta e incoerenze nelle preferenze, in:
*Atti del Ventitreesimo Convegno A.M.A.S. E.S*., Rende-Cosenza, Italy, September 1999, pp. 255–269.Google Scholar - 64.S. Greco, B. Matarazzo, and R. Słowiński, L’approcio dei rough sets all’analisi del rating finanziario, in:
*Atti del Ventitreesimo Convegno A. M. A. S. E. S*., Rende-Cosenza, Italy, September 1999, pp. 271286.Google Scholar - 65.S. Greco, B. Matarazzo, and R. Słowiński, On joint use of indiscernibility, similarity and dominance in rough approximation of decision classes, in:
*Proceedings: the 5th International Conference of the Decision Sciences Institute*, Athens, Greece, July 1999, pp. 1380–1382; also in: Research Report RA-012/98, Inst. Comp. Sci., Poznan Univ. Technology, 1998.Google Scholar - 66.S. Greco, B. Matarazzo, and R.Słowiński, A new rough set approach to evaluation of bankruptcy risk, in: C. Zopounidis (ed.),
*Operational Tools in the Management of Financial Risks, Kluwer Academic Publishers, Dordrecht*, 1998, pp. 121–136.CrossRefGoogle Scholar - 67.S. Greco, B. Matarazzo, and R. Słowiński, Fuzzy similarity relation as a basis for rough approximations, in:
*Proceedings: Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 283–289.Google Scholar - 68.S. Greco, B. Matarazzo, and R. Słowiński, A new rough set approach to multi-criteria and multi-attribute classification, in:
*Proceedings: Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 60–67.CrossRefGoogle Scholar - 69.S. Greco, B. Matarazzo, and R. Słowiński, Rough approximation of a preference relation in a pair—wise comparison table, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems*, Physica-Verlag, Heidelberg, 1998, pp. 13–36.CrossRefGoogle Scholar - 70.S. Greco, B. Matarazzo, and R. Słowiński, Rough set theory approach to decision analysis, in:
*Proceedings: the 3rd European Workshop on Fuzzy Decision Analysis and Neural Networks for Management, Planning and Optimization*(EFDAN’98), Dortmund, Germany, June 1998, pp. 1–28.Google Scholar - 71.S. Greco, B. Matarazzo, and R. Słowiński: Conjoint measurement, preference inconsistencies and decision rule model, in:
*Proceedings: the 2nd International Workshop on Preferences and Decisions*, Trento, Italy, July 1998, pp. 49–53.Google Scholar - 72.S. Greco, B. Matarazzo, and R. Słowiński, New developments in the rough set approach to multi—attribute decision analysis, in:
*Tutorials and Research Reviews: 16th European Conference on Operational Research*(EURO XVI ), Brussels, Belgium, July 1998, 37 pp.Google Scholar - 73.S. Greco, B. Matarazzo, and R. Słowiński, Rough set handling of ambiguity, in: Proceedings:
*the 6th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, 1998, pp. 3–14.Google Scholar - 74.S. Greco, B. Matarazzo, and R. Słowiński, Fuzzy measures as a technique for rough set analysis, in: Proceedings:
*the 6th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, 1998, pp. 99–103.Google Scholar - 75.S. Greco, B. Matarazzo, and R. Słowiński, Un nuovo approccio dei rough sets alla classificazione multiattributo e multicriteriale, in:
*Atti del Ventiduesimo Convegno A. M. A. S. E. S*., Genova, Italy, September 1998, Bozzi Editore, Genova, 1998, pp. 249–260.Google Scholar - 76.S. Greco, B. Matarazzo, and R. Słowiński, Modellizzazione delle preferenze per mezzo di regole di decisione, in:
*Atti del Ventiduesimo Convegno A. M. A. S. E. S*., Genova, Italy, September 1998, Bozzi Editore, Genova, 1998, pp. 233–247.Google Scholar - 77.S. Greco, B. Matarazzo, and R. Słowiński, The rough set approach to decision support, in: Proceedings:
*the Annual Conference of the Operational Research Society of Italy*(AIRO), Treviso, Italy, September 1998, pp. 561–564.Google Scholar - 78.S. Greco, B. Matarazzo, R. Słowiński, and A. Tsoukias, Exploitation of a rough approximation of the outranking relation in multi—criteria choice and ranking, in: T.J. Stewart and R.C. van den Honert (eds.),
*Trends in Multi—criteria Decision Making, LNEMS 465, Springer—Verlag*, Berlin, 1998, pp. 45–60.Google Scholar - 79.S. Greco, B. Matarazzo, R. Słowiński, and S. Zanakis, Rough set analysis of information tables with missing values, in: Proceedings:
*the 5th International Conference of the Decision Sciences Institute, Athens*, Greece, July 1999, pp. 1359–1362.Google Scholar - 80.J. P. Grzymala —Busse, J. W. Grzymala—Busse, and Z. Hippe, Prediction of melanoma using rule induction based on rough sets, in:
*Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Cybernetics and Informatics*, July 2001, vol. VII, pp. 523–527.Google Scholar - 81.J. W. Grzymala—Busse, Applications of the rule induction system LERS, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 366–375.Google Scholar - 82.J. W. Grzymala—Busse, LERS: A knowledge discovery system, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems*, Physica—Verlag, Heidelberg, 1998, pp. 562–565.Google Scholar - 83.J. W. Grzymala—Busse, Rule induction system LERS,
*Bull. of Intern. Rough Set Society*2, 1998, pp. 18–20.Google Scholar - 84.J. W. Grzymala—Busse,
*Classification of unseen examples under uncertainty, Fundamenta Informaticae*30, 1997, pp. 255–267.Google Scholar - 85.J. W. Grzymala—Busse, A new version of the rule induction system LERS,
*Fundamenta Informaticae*31, 1997, pp. 27–39.MATHGoogle Scholar - 86.J. W. Grzymala—Busse, W. J. Grzymala—Busse, and L. K. Goodwin, Coping with missing attribute values based on closest fit in preterm birth data: a rough set approach,
*Computational intelligence*: An Intern. Journal, 17, 2001, pp. 425–434.Google Scholar - 87.J. W. Grzymala—Busse and L. K. Goodwin, Predicting pre—term birth risk using machine learning from data with missing values,
*Bull. of Intern. Rough Set Society*1, 1997, pp. 17–21.Google Scholar - 88.J. W. Grzymala—Busse, L. K. Goodwin, and Xiaohui Zhang, Pre—term birth risk assessed by a new method of classification using selective partial matching, in:
*Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems*(ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer Verlag, Berlin, 1999, pp. 612–620.Google Scholar - 89.J. W. Grzymala—Busse, L. K. Goodwin, and Xiaohui Zhang, Increasing sensitivity of pre—term birth by changing rule strengths, in:
*Proceedings: the 8th Workshop on Intelligent Information Systems*(IIS’99), Ustrorn, Poland, June 1999, pp. 127–136.Google Scholar - 90.J. W. Grzymala—Busse, P. Loupe, and S. Schroeder, Analysis of behavioral responsiveness of rats to GBR12909 using data mining system LERS, in:
*Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics*, Orlando, Cybernetics and Informatics, July 2001, vol. VII, pp. 528–533.Google Scholar - 91.J. W. Grzymala—Busse, W. J. Grzymala—Busse, and L. K. Goodwin, A closest fit approach to missing attribute values in pre—term birth data, in:
*Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular—Soft Computing*(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer—Verlag, Berlin, 1999, pp. 405–413.Google Scholar - 92.J. W. Grzymala—Busse and L. J. Old, A machine learning experiment to determine part of speech from word-endings, in:
*Proceedings: the 10th Intern. Symposium on Methodologies for Intelligent Systems*(ISMIS’97), Charlotte NC, October 1997, LNAI 1325, Springer-Verlag, Berlin, 1997, pp. 497–506.Google Scholar - 93.J. W. Grzymala—Busse, S. Y. Sedelow, and W. A. Sedelow Jr., Machine learning and knowledge acquisition, rough sets, and the English semantic code, in: T. Y. Lin and N. Cercone (eds.),
*Rough Sets and Data Mining. Analysis of Imprecise Data*, Kluwer Academic Publishers,Dordrecht, 1997, pp. 91–107.CrossRefGoogle Scholar - 94.J. W. Grzymala—Busse and Soe Than, Inducing simpler rules from reduced data, in:
*Proceedings: the Seventh Workshop on Intelligent Information Systems*(IIS’98), Malbork, Poland, June 1998, pp. 371–378.Google Scholar - 95.J. W. Grzymala—Busse and J. Stefanowski, Two approaches to numerical attribute discretization for rule induction, in:
*Proceedings: the 5th International Conference of the Decision Sciences Institute*, Athens, Greece, July 1999, pp. 1377–1379.Google Scholar - 96.J. W. Grzymala—Busse and J. Stefanowski, Discretization of numerical attributes by direct use of the rule induction algorithm LEM2 with interval extension, in:
*Proceedings: the Sixth Symposium on Intelligent Information Systems*(IIS’97), Zakopane, Poland, June 1997, pp. 149158.Google Scholar - 97.J. W. Grzymala—Busse and Ta-Yuan Hsiao, Dropping conditions in rules induced by ID3, in:
*Proceedings: the 6th International Workshop*Google Scholar *on Rough Sets, Data Mining and Granular Computing*(RSDMGrC’98) at*the 4th Joint Conference on Information Sciences*(JCIS’98), Research Triangle Park NC, October 1998, pp. 351–354.Google Scholar- 98.J. W. Grzymala—Busse and A. Y. Wang, Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values, in:
*Proceedings: the 5th Intern. Workshop on Rough Sets*(RSSC’97) at*the 3rd Joint Conference on Information Sciences*(JCIS’97), Research Triangle Park NC, March 1997, pp. 69–72.Google Scholar - 99.J. W. Grzymala—Busse and P. Werbrouck, On the best search method in the LEM1 and LEM2 algorithms, in:E. Orlowska (ed.),
*Incomplete Information: Rough Set Analysis, Physica—Verlag*, Heidelberg, 1998, pp. 75–91.Google Scholar - 100.J. W. Grzymala—Busse and Xihong Zou, Classification strategies using certain and possible rules, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer Verlag, Berlin, 1998, pp. 37–44.Google Scholar - 101.Hoang Kiem and Do Phuc, A combined multi-dimensional Genetic Algorithm and Kohonen Neural Network for cluster discovery in Data Mining, in:
*Proceedings: the 3rd International Conference on Data Mining*(PAKDD’99), Beijing, China, 1999.Google Scholar - 102.Hoang Kiem and Do Phuc, A Rough Genetic Kohonen Neural Network for conceptual cluster discovery, in:
*Proceedings: the 7th Work-Shop on Rough Set, Fuzzy Set, Granular Computing and Data Mining*(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer Verlag, Berlin, 1999, pp. 448–452.Google Scholar - 103.Hoang Kiem and Do Phuc, On the association rules based extension of the dependency of attributes in rough set theory for classification problem,
*Magazine of Science and Technology*1, 1999, Vietnam National University.Google Scholar - 104.Hoang Kiem and Do Phuc, Discovering the binary and fuzzy association rules from database,
*Magazine of Science and Technology*4, 1999, Vietnam National University.Google Scholar - 105.V. Jog, W. Michalowski, R. Słowiński, and R. Susmaga, The rough set analysis and the neural networks classifier — a hybrid approach to predicting stocks’ performance, in:
*Proceedings: the 5th International Conference of the Decision Sciences Institute*, Athens, Greece, July 1999, pp. 1386–1388.Google Scholar - 106.R. E. Kent, Soft concept analysis, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision—Making*, Springer—Verlag, Singapore, 1999, pp. 215–232.Google Scholar - 107.A. N. Knyazev, On word recognition in language generated by 1-contextfree grammar (in Russian), in: Proceedings:
*12th International Conference on Problems of Theoretical Cybernetics*, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, Part 1 (1999), pp. 96.Google Scholar - 108.A. N. Knyazev, On recognition of words from languages generated by linear grammars with one non—terminal symbol, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 111–114.Google Scholar - 109.J. Komorowski, L. Polkowski, and A. Skowron, Rough Sets: A Tutorial, in:
*Lecture Notes for ESSLLI’99: the 11th European Summer School in Language, Logic and Information*, Utrecht, Holland, August 1999, 111Google Scholar - 110.J. Komorowski, Z. Pawlak, L. Polkowski, and A. Skowron, Rough sets: A tutorial, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization*: A New Trend in Decision Making, Springer Verlag, Singapore, 1999, pp. 3–98.Google Scholar - 111.J. Komorowski, L. Polkowski, and A. Skowron, Towards a rough mereology—based logic for approximate solution synthesis,
*Studia Logica*58 (1), 1997, pp. 143–184.MathSciNetMATHCrossRefGoogle Scholar - 112.J. Komorowski, L. Polkowski, and A. Skowron, Rough sets for Data Mining and Knowledge Discovery (Tutorial—abstract), in:
*Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery*, Trondheim, NorwayGoogle Scholar - LNAI 1263, Springer—Verlag, Berlin, pp. 395–395.Google Scholar
- 113.B. Kostek, Soft Computing in Acoustics, Applications of Neural Networks,
*Fuzzy Logic and Rough Sets to Musical Acoustics in the Series: Studies in Fuzziness and Soft Computing*(J. Kacprzyk (ed.)), vol. 31, Physica—Verlag, Heilderberg, 1999.Google Scholar - 114.B. Kostek, Assessment of concert hall acoustics using rough set and fuzzy set approach, in: S. K. Pal and A. Skowron (eds.),:
*Rough—Fuzzy Hybridization: A New Trend in Decision Making*, Springer-Verlag, Singapore, 1999, pp. 381–396.Google Scholar - 115.B. Kostek, Rough—fuzzy method of subjective test result processing, in:
*Proceedings: the 8th International Symposium on Sound Engineering*Google Scholar - and Mastering (ISSEM’99), Gdansk, Poland, September 1999, pp. 1118.Google Scholar
- 116.B. Kostek, Soft computing—based recognition of musical sounds, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 193–213.CrossRefGoogle Scholar - 117.B. Kostek, Computer—based recognition of musical phrases using the rough set approach, J
*. Information Sciences 104*, 1998, pp. 15–30.CrossRefGoogle Scholar - 118.B. Kostek, Soft set approach to the subjective assessment of sound quality, in: Proceedings: the Conference
*FUZZ-IEEE’98 at the World Congress on Computational Intelligence*(WCCI’98), Anchorage, Alaska, May 1998, pp. 669–674.Google Scholar - 119.B. Kostek, Automatic recognition of sounds of musical instruments: An expert media application, in:
*Proceedings: the World Automation Congress*(WAC’98), pp. IFMIP-053.Google Scholar - 120.B. Kostek, Sound quality assessment based on the rough set classifier, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 193–195.Google Scholar - 121.B. Kostek, Soft set approach to the subjective assessment of sound quality, in:
*Proceedings: the 9th Intern. Conference on Systems Research Informatics and Cybernetics*(InterSymp’97), Baden—Baden, Germany, 1997.Google Scholar - 122.B. Kostek, Rough set and fuzzy set methods applied to acoustical analyses,
*J. Intelligent Automation and Soft Computing*, 2 (2), 1996, pp. 147–160.Google Scholar - 123.K. Krawiec, R. Słowiński, and D. Vanderpooten, Learning of decision rules from similarity based rough approximations, in:
*L. Polkowski, A. Skowron (eds.)*, Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 37–54.CrossRefGoogle Scholar - 124.R. Krôlikowski and A. Czyzewski, Noise reduction in telecommunication channels using rough sets and neural networks, in:
*Proceedings: the 7th Intern. Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing*(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer—Verlag, Berlin, 1999, pp. 109117.Google Scholar - 125.R. Krôlikowski and A. Czyzewski, Applications of rough sets and neural nets to noisy audio enhancement, in:
*proceedings: the 7th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’99), Aachen, Germany, September 1999.Google Scholar - 126.M. Lifantsev and A. Wasilewska, A decision procedure for rough sets equalities, in:
*Proceedings: the 18th International Conference of the North American Fuzzy Information Processing Society*(NAFIPS’99), New York NY, June 1999, pp. 786–791.Google Scholar - 127.T. Y. Lin, Data Mining and machine oriented modeling:
*A granular computing approach*, Journal of Applied Intelligence, in print.Google Scholar - 128.T. Y. Lin, Theoretical sampling for Data Mining, in: Proceedings:
*the 14th Annual International Symposium Aerospace/Defense Sensing, Simulation, and Controls*(SPIE) 4057, Orlando Fla., April 2000, to appear.Google Scholar - 129.T. Y. Lin, Attribute transformations on numerical databases: Applications to stock market data, in: Methodologies for Knowledge Discovery and Data Mining,
*LNAI, Springer-Verlag*, Berlin, 2000, to appear.Google Scholar - 130.T. Y. Lin, Belief functions and probability of fuzzy sets, in:
*Proceedings: the 8th IFSA World Congress*(IFSA’99), Taipei, Taiwan, August 1999, pp. 219–223.Google Scholar - 131.T. Y. Lin, Discovering patterns in numerical sequences using rough set theory, in:
*Proceedings: the 3rd World Multi-Conference on Systemics*, Cybernetics and Informatics, Orlando Fla., Cybernetics and Informatics, 1999, 5, pp. 568–572.Google Scholar - 132.T. Y. Lin, Measure theory on granular fuzzy sets, in:
*Proceedings: the 18th International Conference of North America Fuzzy Information Processing Society*, June 1999, pp. 809–813.Google Scholar - 133.T. Y. Lin, Data Mining: Granular computing approach, in:
*Methodologies for Knowledge Discovery and Data Mining*, the 3rd Pacific-Asia Conference, Beijing, China, April 1999, LNAI 1574, Springer-Verlag, Berlin, 1999, pp. 24–33.Google Scholar - 134.T. Y. Lin, Granular computing: Fuzzy logic and rough sets, in: L.A. Zadeh and J. Kacprzyk (eds),
*Computing with Words in Information Intelligent Systems 1*, Physica-Verlag, Heidelberg, 1999, pp. 183–200.CrossRefGoogle Scholar - 135.T. Y. Lin, Granular computing on binary relations II: Rough set representations and belief functions, in: L. Polkowski and A. Skowron (eds),
*Rough Sets In Knowledge Discovery 1.Methodology and Applications*, Physica-Verlag, Heidelberg, 1998, pp. 121–140.Google Scholar - 136.T. Y. Lin, Granular computing on binary relations I: Data Mining and neighborhood systems, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets In Knowledge Discovery 1. Methodology and Applications*, Physica-Verlag, Heidelberg, 1998, pp. 107–121.Google Scholar - 137.T. Y. Lin, Context free fuzzy sets and information tables, in:
*Proceedings: the Sixth European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, pp. 76–80.Google Scholar - 138.T. Y. Lin, Granular fuzzy sets: Crisp representation of fuzzy sets, in:
*Proceedings: the Sixth European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, pp. 94–98.Google Scholar - 139.T. Y. Lin, Fuzzy partitions: Rough set theory, in:
*Proceedings: the Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems*(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1167–1174.Google Scholar - 140.T. Y. Lin, Sets with partial memberships: A Rough sets view of fuzzy sets, in:
*Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence*(WCCI’98), Anchorage, Alaska, May 1998.Google Scholar - 141.T. Y. Lin and Q. Liu, First-order rough logic revisited, in:
*Proceedings: the 7th International Workshop on rough Sets, Fuzzy Sets, Data Mining and Granular-Soft computing*(RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, pp. 276–284.Google Scholar - 142.T. Y. Lin and E. Louie, A Data Mining approach using machine oriented modeling: finding association rules using canonical names, in:
*Proceedings: the 14th Annual International Symposium Aerospace/Defense Sensing, Simulation*, and Controls (SPIE) 4057, Orlando Fla., April 2000, to appear.Google Scholar - 143.T. Y. Lin, Ning Zhong, J. J. Dong, and S. Ohsuga, An incremental, probabilistic rough set approach to rule discovery, in:
*Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence*(WCCI’98), Anchorage, Alaska, May 1998.Google Scholar - 144.T. Y. Lin, Ning Zhong, J. J. Dong, and S. Ohsuga, Frameworks for mining binary relations in data, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 387–393.Google Scholar - 145.T. Y. Lin and S. Tsumoto, Context-free fuzzy sets in Data Mining context, in: Proceedings: the 7th International Workshop on Rough Sets,
*Fuzzy Sets, Data Mining and Granular—Soft computing*(RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, pp. 212–220.Google Scholar - 146.P. Lingras and C. Davies, Applications of rough genetic algorithms,
*Computational Intelligence: An Intern. journal*, 17, 2001, pp. 435445.Google Scholar - 147.B. Marszal-Paszek, Linking a-approximation with evidence theory, in:
*Proceedings: the 6th International Conference Information Processing and Management of Uncertainty in Knowledge-Base System*(IPMU’96), Granada, Spain, 1996, pp. 1153–1158.Google Scholar - 148.B. Marszal-Paszek and P. Paszek, Searching for attributes which well determinate decision in the decision table, in:
*Proceedings: Intelligent Information Systems VIII*, Ustron, Poland, 1999, pp. 146–148.Google Scholar - 149.B. Marszal-Paszek and P. Paszek, Extracting strong relationships between data from decision table, in:
*Proceedings: Intelligent Information Systems VII*, Malbork, Poland, 1998, pp. 396–399.Google Scholar - 150.V. W. Marek and M. Truszczynski, Contributions to the theory of rough sets,
*Fundamenta Informaticae*39 (4), 1999, pp. 389–409.MathSciNetMATHGoogle Scholar - 151.E. Martienne and M. Quafafou, Learning fuzzy relational descriptions using the logical framework and rough set theory, in:
*Proceedings: the th IEEE International Conference on Fuzzy Systems*(FUZZ-IEEE’98) IEEE Neural Networks Council, 1998.Google Scholar - 152.E. Martienne and M. Quafafou, Learning logical descriptions for document understanding: a rough sets based approach, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998.Google Scholar - 153.E. Martienne and M. Quafafou, Vagueness and data reduction in learning of logical descriptions, in:
*Proceedings: the 13th European Conference on Artificial Intelligence*(ECAI’98), Brighton, UK, August 1998, John Wiley and Sons, Chichester, 1998.Google Scholar - 154.P. Mitra, S. Mitra, and S.K. Pal, Staging of cervical cancer with Soft Computing,
*IEEE Trans. Bio-Medical Engineering*, in print.Google Scholar - 155.S. Mitra, M. Banerjee, and S.K. Pal, Rough Knowledge-based networks, fuzziness and classification,
*Neural Computing and Applications*7, 1998, pp. 17–25.MATHCrossRefGoogle Scholar - 156.S. Mitra, P. Mitra, and S. K. Pal, Evolutionary design of modular Rough Fuzzy MLP,
*Neurocomputing*, communicated.Google Scholar - 157.S. Miyamoto and Kyung Soo Kim, Images of fuzzy multi-sets by one-variable functions and their applications (in Japanese),
*Journal of Japan Society for Fuzzy Theory and Systems*l0(1), 1998, pp. 150–157.Google Scholar - 158.S. Miyamoto, Application of rough sets to information retrieval,
*Journal of the American Society for Information Science*47(3), 1998, pp. 195205.Google Scholar - 159.S. Miyamoto, Indexed rough approximations and generalized possibility theory, in:
*Proceedings: FUZZ-IEEE’98*, May 4–9, 1998, Anchorage, Alaska, pp. 791–795.Google Scholar - 160.S. Miyamoto, Fuzzy multi-sets and a rough approximation by multiset-valued function, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, PhysicaVerlag, Heidelberg, 1998, pp. 141–159.Google Scholar - 161.H. Moradi, J. W. Grzymala-Busse, and J. A. Roberts, Entropy of English text: Experiments with humans and a machine learning system based on rough sets,
*Information Sciences. An International Journal*104, 1998, pp. 31–47.Google Scholar - 162.M. Ju. Moshkov, Time complexity of decision trees (in Russian), in:
*Proceedings: the 9th Workshop on Synthesis and Complexity of Control Systems*, Nizhny Novgorod, Russia, 1998, Moscow State University Publishers, Moscow, 1999, pp. 52–62.Google Scholar - 163.M. Ju. Moshkov, Local approach to construction of decision trees, in: S.K.Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization. A New Trend In Decision-Making*, Springer-Verlag, Singapore, 1999, pp. 163176.Google Scholar - 164.M. Ju. Moshkov, On complexity of deterministic and nondeterministic decision trees (in Russian), in:
*Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics*, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, p. 164.Google Scholar - 165.M. Ju. Moshkov, On the depth of decision trees (in Russian),
*Doklady RAN*, 358 (1), 1998, p. 26.MathSciNetGoogle Scholar - 166.M. Ju. Moshkov, Some relationships between decision trees and decision rule systems, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 499–505.Google Scholar - 167.M. Ju. Moshkov, Three ways for construction and complexity estimation of decision trees, in:
*Program: the 16th European Conference on Operational Research*(EURO XVI ), Brussels, Belgium, July 1998, pp. 66–67.Google Scholar - 168.M. Ju. Moshkov, Rough analysis of tree—program time complexity, in:
*Proceedings: the 7th International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems*, La Sorbonne, Paris, France, July 1998, pp. 1376–1380.Google Scholar - 169.M. Ju. Moshkov, On time complexity of decision trees, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 160–191.Google Scholar - 170.M. Ju. Moshkov, On time complexity of decision trees (in Russian), in:
*Proceedings: International Siberian Conference on Operational Research*, Novosibirsk, Russia, 1998, pp. 28–31.Google Scholar - 171.M. Ju. Moshkov, On complexity of decision trees over infinite information systems, in:
*Proceedings: the Third Joint Conference on Information Sciences*(JCIS’97), Duke University, USA, 1997, pp. 353–354.Google Scholar - 172.M. Ju. Moshkov, Algorithms for constructing of decision trees, in:
*Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery*(PKDD’97), Trondheim, Norway, 1997, LNAI 1263, Springer—Verlag, Berlin, 1997, pp. 335–342.Google Scholar - 173.M. Ju. Moshkov, Unimprovable upper bounds on time complexity of decision trees,
*Fundamenta Informaticae*31 (2), 1997, pp. 157–184.MathSciNetMATHGoogle Scholar - 174.M. Ju. Moshkov, Rough analysis of tree-programs, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’ 97 ), Aachen, Germany, September 1997, Verlag Mainz, Aachen, pp. 231–235.Google Scholar - 175.M. Ju. Moshkov, Complexity of deterministic and nondeterministic decision trees for regular language word recognition, in:
*Proceedings: the 3rd International Conference on Developments in Language Theory*, Thessaloniki, Greece, 1997, pp. 343–349.Google Scholar - 176.M. Ju. Moshkov, Comparative analysis of time complexity of deterministic and nondeterministic tree—programs (in Russian), in:
*Actual Problems of Modern Mathematics*3, Novosibirsk University Publishers, Novosibirsk, 1997, pp. 117–124.Google Scholar - 177.M. Ju. Moshkov and I. V. Chikalov, On effective algorithms for conditional test construction (in Russian), in:
*Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics*, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, pp. 165.Google Scholar - 178.M. Ju. Moshkov and I. V. Chikalov, Bounds on average depth of decision trees, in:
*Proceedings: the Fifth European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, pp. 226–230.Google Scholar - 179.M. Ju. Moshkov and I. V. Chikalov, Bounds on average weighted depth of decision trees,
*Fundamenta Informaticae*31 (2), 1997, pp. 145–156.MathSciNetMATHGoogle Scholar - 180.M. Ju. Moshkov and A. Moshkova, Optimal bases for some closed classes of Boolean functions, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT 97 ), Aachen, Germany, September 1997, Verlag Mainz, Aachen, pp. 1643–1647.Google Scholar - 181.A. M. Moshkova, On complexity of “retaining” fault diagnosis in circuits (in Russian), in:
*Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics*, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, p. 166.Google Scholar - 182.A. M. Moshkova, On diagnosis of retaining faults in circuits, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 513–516.Google Scholar - 183.A. M. Moshkova, Diagnosis of “retaining” faults in circuits (in Russian),
*Bulletin of Nizhny Novgorod State University. Mathematical Simulation and Optimal Control*19, 1998, pp. 204–213.Google Scholar - 184.A. Nakamura, Conflict logic with degrees, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision-Making, Springer-Verlag*, Singapore, 1999, pp. 136–150.Google Scholar - 185.Nguyen Hung Son, From optimal hyperplanes to optimal decision trees,
*Fundamenta Informaticae*34 (1–2), 1998, pp. 145–174.Google Scholar - 186.Nguyen Hung Son, Discretization problems for rough set methods, in:
*Proceedings: the First International Conference on Rough Sets and Current Trend in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 545–552.Google Scholar - 187.Nguyen Hung Son, Discretization of real value attributes. Boolean reasoning approach, Ph.D. Dissertation, supervisor A. Skowron, Warsaw University,Warsaw, 1997, pp. 1–90.Google Scholar
- 188.Nguyen Hung Son, Rule induction from continuous data, in:
*Proceedings: the 5th International Workshop on Rough Sets and Soft Computing*(RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, March 1997, pp. 81–84.Google Scholar - 189.Nguyen Hung Son and Nguyen Sinh Hoa, An application of discretization methods in control, in:
*Proceedings: the Workshop on Robotics*, Intelligent Control and Decision Support Systems, Polish-Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 47–52.Google Scholar - 190.Nguyen Hung Son and Nguyen Sinh Hoa, Discretization methods in Data Mining, in: L. Polkowski and A. Skowron (eds.):
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, PhysicaVerlag, Heidelberg, 1998, pp. 451–482.Google Scholar - 191.Nguyen Hung Son and Nguyen Sinh Hoa, Discretization methods with back—tracking, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 201–205.Google Scholar - 192.Nguyen Hung Son, Nguyen Sinh Hoa, and A. Skowron, Decomposition of task specifications, in:
*Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems*, Foundations of Intelligent Systems (ISMIS’99), Warsaw, Poland, June 8–11, LNAI 1609, Springer—Verlag, Berlin, pp. 310–318.Google Scholar - 193.Nguyen Hung Son and A. Skowron, Boolean reasoning scheme with some applications in Data Mining, in:
*Proceedings: Principles of Data Mining and Knowledge Discovery*(PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer—Verlag, Berlin, 1999, pp. 107115.Google Scholar - 194.Nguyen Hung Son and A. Skowron, Task decomposition problem in multi—agent system, in:
*Proceedings: the Workshop on Concurrency, Specification and Programming*, Berlin, Germany, September 1998, Informatik Bericht 110, Humboldt—Universität zu Berlin, pp. 221–235.Google Scholar - 195.Nguyen Hung Son and A. Skowron, Boolean reasoning for feature extraction problems, in:
*Proceedings: the 10th International Symposium on Methodologies for Intelligent Systems*, Foundations of Intelligent Systems (ISMIS’97), Charlotte NC, October 1997, LNAI 1325, Springer—Verlag, Berlin, 1997, pp. 117–126.Google Scholar - 196.Nguyen Hung Son and A. Skowron, Quantization of real value attributes: Rough set and boolean reasoning approach,
*Bulletin of International Rough Set Society*1 (1), 1997, pp. 5–16.Google Scholar - 197.Nguyen Hung Son, A. Skowron, and J. Stepaniuk, Granular computing: a rough set approach,
*Computational Intelligence: An Intern. Journal*, 17, 2001, pp. 514–544.Google Scholar - 198.Nguyen Hung Son, M. Szczuka, and D. Slgzak, Neural network design: Rough set approach to continuous data, in:
*Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery*(PKDD’97), Trondheim, Norway,June 1997, LNAI 1263, Springer-Verlag, Berlin, 1997, pp. 359–366.Google Scholar - 199.Nguyen Hung Son and D. Slgzak, Approximate reducts and association rules: correspondence and complexity results, in:
*Proceedings: the 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular—Soft Computing*(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, 1999, pp. 137–145.Google Scholar - 200.Nguyen Sinh Hoa, Discovery of generalized patterns, in:
*Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems*(ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer-Verlag, Berlin, in print.Google Scholar - 201.Nguyen Sinh Hoa, Data regularity analysis and applications in data mining, Ph.D. Dissertation, supervisor B. Chlebus, Warsaw University, Warsaw, Poland, 1999.Google Scholar
- 202.Nguyen Sinh Hoa and Nguyen Hung Son, Pattern extraction from data, in:
*Proceedings: the Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems*(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1346–1353.Google Scholar - 203.Nguyen Sinh Hoa and Nguyen Hung Son, Pattern extraction from data,
*Fundamenta Informaticae*34 (1–2), 1998, pp. 129–144.MathSciNetMATHGoogle Scholar - 204.Nguyen Sinh Hoa, Nguyen Than Trung, L. Polkowski, A. Skowron, P. Synak, and J. Wróblewski, Decision rules for large data tables, in:
*Proceedings: CESA ‘86 IMACS Multiconference: Computational Engineering in Systems Applications*(CESA’96), Lille, France, July 1996, pp. 942–947.Google Scholar - 205.Nguyen Sinh Hoa and A. Skowron, Searching for relational patterns in data, in:
*Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery*(PKDD’97), Trondheim, Norway, June 1997, LNAI 1263, Springer-Verlag, Berlin, 1997, pp. 265276.Google Scholar - 206.Nguyen Sinh Hoa, A. Skowron, and P. Synak, Discovery of data patterns with applications to decomposition and classification problems, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, PhysicaVerlag, Heidelberg, 1998, pp. 55–97.Google Scholar - 207.Nguyen Sinh Hoa, A. Skowron, P. Synak, and J. Wróblewski, Knowledge discovery in data bases: Rough set approach, in:
*Proceedings: the 7th International Fuzzy Systems Association World Congress*(IFSA’97), Prague, the Czech Republic, June 1997, Academia, Prague, 1997, pp. 204–209.Google Scholar - 208.A. Ohm, J. Komorowski, A. Skowron, and P. Synak, The design and implementation of a knowledge discovery toolkit based on rough sets— The ROSETTA system, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 376–399.Google Scholar - 209.A. Ohm, J. Komorowski, A. Skowron, and P. Synak, The ROSETTA software system, In: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 572–576.Google Scholar - 210.A. Ohm, J. Komorowski, A. Skowron, and P. Synak, A software system for rough data analysis,
*Bulletin of the International Rough Set Society*1 (2), 1997, pp. 58–59.Google Scholar - 211.P. Paszek and A. Wakulicz—Deja, Optimalization diagnose in progressive encephalopathy applying the rough set theory, in:
*Intelligent Information Systems V*, Deblin, Poland, 1996, pp. 142–151.Google Scholar - 212.G. Paun, L. Polkowski, and A. Skowron, Rough set approximations of languages,
*Fundamenta Informaticae*32 (2), 1997, pp. 149–162.MathSciNetMATHGoogle Scholar - 213.G. Paun, L. Polkowski, and A. Skowron, Parallel communicating grammar systems with negotiations,
*Fundamenta Informaticae*28 (3–4), 1996, pp. 315–330.MathSciNetMATHGoogle Scholar - 214.G. Paun, L. Polkowski, and A. Skowron, Rough—set—like approximations of context—free and regular languages, in:
*Proceedings: Information Processing and Management of Uncertainty in Knowledge Based Systems*(IPMU-96), Granada, Spain, July 1996, pp. 891–895.Google Scholar - 215.Z. Pawlak, Combining rough sets and Bayes’ rule, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 401–408.Google Scholar
- 216.Z. Pawlak, Granularity of knowledge, indiscernibility, and rough sets, in:
*Proceedings: IEEE Conference on Evolutionary Computation*, Anchorage, Alaska, May 5–9, 1998, pp. 106–110; also in: IEEE Transactions on Automatic Control 20, 1999, pp. 100–103.Google Scholar - 217.Z. Pawlak, Rough set theory for intelligent industrial applications, in:
*Proceedings: the 2nd International Conference on Intelligent Processing and Manufacturing of Materials*, Honolulu, Hawaii, 1999, pp. 37–44.Google Scholar - 218.Z. Pawlak, Data Mining–a rough set perspective, in:
*Proceedings: Methodologies for Knowledge Discovery and Data Mining. The 3rd Pacific-Asia Conference*, Beijing, China, Springer- Verlag, Berlin, 1999, pp. 3–11.CrossRefGoogle Scholar - 219.Z. Pawlak, Rough sets, rough functions and rough calculus, in: S.K. Pal, A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision Making*, Springer-Verlag, Singapore, 1999, pp. 99–109.Google Scholar - 220.Z. Pawlak, Logic, Probability and Rough Sets, in: J. Karhumaki, H. Maurer, G. Paun, and G. Rozenberg (eds.),
*Jewels are Forever. Contributions to Theoretical Computer Science in Honor of Arto Salomaa*, Springer-Verlag, Berlin, 1999, pp. 364–373.CrossRefGoogle Scholar - 221.Z. Pawlak, Decision rules, Bayes’ rule, and rough sets, in:
*Proceedings: the 7th International Workshop on rough Sets, Fuzzy Sets, Data Mining and Granular-Soft computing*(RSFSGrC’99), Ube-Yamaguchi, Japan, November 1999, LNAI 1711, Springer-Verlag, Berlin, pp. 1–9.Google Scholar - 222.Z. Pawlak, An inquiry into anatomy of conflicts,
*Journal of Information Sciences*109, 1998, pp. 65–78.MathSciNetCrossRefGoogle Scholar - 223.Z. Pawlak, Sets, fuzzy sets, and rough sets, in: Proceedings: Fuzzy–Neuro Systems–Computational Intelligence, Muenchen, Germany, March 18–20, 1998, pp. 1–9.Google Scholar
- 224.Z. Pawlak, Reasoning about data-a rough set perspective, in:
*Proceedings: First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 25–34.CrossRefGoogle Scholar - 225.Z. Pawlak, Rough sets theory and its applications to data analysis,
*Cybernetics and Systems*29, 1998, pp. 661–688.MATHCrossRefGoogle Scholar - 226.Z. Pawlak, Rough set elements, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methods and Applications, Physica-Verlag, Heidelberg*, 1998, pp. 10–30.Google Scholar - 227.Z. Pawlak, Rough Modus Ponens, in:
*Proceedings: the 7th Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems*(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1162–1165.Google Scholar - 228.Z. Pawlak, Rough set approach to knowledge-based decision support,
*European Journal of Operational Research*29 (3), 1997, pp. 1–10.Google Scholar - 229.Z. Pawlak, Rough sets and Data Mining, in:
*Proceedings: the International Conference on Intelligent Processing and Manufacturing Materials*, Gold Coast, Australia, 1997, pp. 1–5.Google Scholar - 230.Z. Pawlak, Rough sets, in: T.Y. Lin, N. Cercone (eds.),
*Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers*, Dordrecht, 1997, pp. 3–8.CrossRefGoogle Scholar - 231.Z. Pawlak, Rough real functions and rough controllers, in: T.Y. Lin, N. Cercone (eds.), Rough Sets and Data Mining.
*Analysis of Imprecise Data, Kluwer Academic Publishers*, Dordrecht, 1997, pp. 139–147.CrossRefGoogle Scholar - 232.Z. Pawlak, Conflict analysis, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, September 9–11, Verlag Mainz, Aachen, 1997, pp. 15891591.Google Scholar - 233.Z. Pawlak, Rough sets and their applications,
*Proceedings: Fuzzy Sets 97*, Dortmund, Germany, 1997.Google Scholar - 234.Z. Pawlak, Vagueness—a rough set view, in:
*Structures in Logic and Computer Science*, LNCS 1261, Springer—Verlag, Berlin, 1997, pp. 106117.Google Scholar - 235.Z. Pawlak, Data analysis with rough sets, in:
*Proceedings: CODATA’96*, Tsukuba, Japan, October 1996.Google Scholar - 236.Z. Pawlak, Rough sets, rough relations and rough functions, in:
*Fundamenta Informaticae*27(2–3), 1996, pp. 103–108.Google Scholar - 237.Z. Pawlak, Data versus Logic: A rough set view, in:
*Proceedings: the 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery*(RSFD’96), Tokyo, November 1996, pp. 1–8.Google Scholar - 238.Z. Pawlak, Rough sets: Present state and perspectives, in:
*Proceedings: the Sixth International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems*(IPMU’96), Granada, Spain, July 1996, pp. 1137–1145.Google Scholar - 239.Z. Pawlak, Some remarks on explanation of data and specification of processes,
*Bulletin of International Rough Set Society*1 (1), 1996, pp. 1–4.Google Scholar - 240.Z. Pawlak, Why rough sets?, in:
*Proceedings: the 5th IEEE International Conference on Fuzzy Systems*(FUZZ-IEEE’96), New Orleans, Louisiana, September 1996, pp. 738–743.CrossRefGoogle Scholar - 241.Z. Pawlak, Rough Sets and Data Analysis, in:
*Proceedings: the 1996 Asian Fuzzy Systems Symposium–Soft Computing in Intelligent Systems and Information Processing*, Kenting, Taiwan ROC, December 1996, pp. 1–6.Google Scholar - 242.Z. Pawlak, On some Issues Connected with Indiscernibility, in: G. Paun (ed.),
*Mathematical Linguistics and Related Topics*, Editura Academiei Romane, Bucure§ti, 1995, pp. 279–283.Google Scholar - 243.Z. Pawlak, Rough sets, in: Proceedings of ACM: Computer Science Conference, Nashville TN, February 28-March 2, 1995, pp. 262–264.Google Scholar
- 244.Z. Pawlak, Rough real functions and rough controllers, in:
*Proceedings: the Workshop on Rough Sets and Data Mining at 23rd Annual Computer Science Conference*, Nashville TN, March 1995, pp. 58–64.Google Scholar - 245.Z. Pawlak, Vagueness and uncertainty: A Rough set perspective, Computational
*Intelligence: An International Journal*11(2)a special issue: W. Ziarko (ed.)), pp. 227–232.Google Scholar - 246.Z. Pawlak, Rough set approach to knowledge-based decision support, in:
*Towards Intelligent Decision Support. Semi—Plenary Papers: the 14th European Conference of Operations Research — 20th Anniversary of EURO, Jerusalem*, Israel, July 1995.Google Scholar - 247.Z. Pawlak, Rough set theory, in:
*Proceedings: the 2nd Annual Joint Conference on Information Sciences*(JCIS’95), Wrightsville Beach NC, September 28-October 1, 1995, pp. 312–314.Google Scholar - 248.Z. Pawlak, Rough sets: Present state and further prospects, in: T. Y. Lin and A. M. Wildberger (eds.),
*Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils Inc*., San Diego CA, 1995, pp. 78–85.Google Scholar - 249.Z. Pawlak, Hard and soft sets, in: W. Ziarko (ed.),
*Rough Sets, Fuzzy Sets and Knowledge Discovery*(RSKD’93), Workshops in Computing, Springer-Verlag and British Computer Society, Berlin and London, 1994, pp. 130–135.CrossRefGoogle Scholar - 250.Z. Pawlak, Knowledge and uncertainty–A rough sets approach, in: Proceedings: Incompleteness and Uncertainty in Information Systems; SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems, Concordia Univ., Montreal, Canada,1993; also in: W. Ziarko (ed.),
*Rough Sets, Fuzzy Sets and Knowledge Discovery*(RSKD’ 93 ), Workshops in Computing, Springer-Verlag and British Computer Society, Berlin and London, 1994, pp. 34–42.Google Scholar - 251.Z. Pawlak, An inquiry into vagueness and uncertainty, in:
*Proceedings: the 3rd International Workshop on Intelligent Information Systems*, Wigry, Poland, June 1994, Institute of Computer Science, Polish Academy of Sciences, Warsaw, 1994, pp. 338–359.Google Scholar - 252.Z. Pawlak, Rough sets: Present state and further prospects, in:
*Proceedings: the 3rd International Workshop on Rough Sets and Soft Computing*(RSSC94), San Jose, California, November 10–12, pp. 3–5.Google Scholar - 253.Z. Pawlak, Rough sets and their applications,
*Microcomputer Applications*13 (2), 1994, pp. 71–75.Google Scholar - 254.Z. Pawlak, Anatomy of conflict,
*Bull. of the European Association for Theoretical Computer Science*50, 1993, pp. 234–247.MATHGoogle Scholar - 255.Z. Pawlak, Rough sets. Present state and the future, in:
*Proceedings: the First International Workshop on Rough Sets: State of the Art and Perspectives*, Kiekrz–Poznan, Poland, September 1992, pp. 51–53.Google Scholar - 256.Z. Pawlak, E. Czogala, and A. Mrôzek, Application of a rough fuzzy controller to the stabilization of an inverted pendulum, in:
*Proceedings: the 2nd European Congress on Intelligent Techniques and Soft Computing*(EUFIT’94), Aachen, Germany, Verlag Mainz, Aachen, pp. 1403–1406.Google Scholar - 257.Z. Pawlak, E. Czogala and A. Mrôzek, The idea of a rough fuzzy controller and its applications to the stabilization of a pendulum-car system,
*Fuzzy Sets and Systems*72, 1995, pp. 61–73.CrossRefGoogle Scholar - 258.Z. Pawlak, J.W. Grzymala-Busse, W. Ziarko, and R. Słowiński, Rough sets,
*Communications of the ACM*38 /11, 1995, pp. 88–95.CrossRefGoogle Scholar - 259.Z. Pawlak, A.G. Jackson, and S.R. LeClair, Rough sets and the discovery of new materials,
*Journal of Alloys and Compounds*, 1997, pp. 1–28.Google Scholar - 260.Z. Pawlak and T. Munakata, Rough control: Application of rough set theory to control, in:
*Proceedings: 4th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’96), Aachen, Germany, Verlag Mainz, Aachen, 1996, pp. 209–218.Google Scholar - 261.Z. Pawlak and A. Skowron, Helena Rasiowa and Cecylia Rauszer’s research on logical foundations of Computer Science, in: A. Skowron (ed.),
*Logic, Algebra and Computer Science. Helena Rasiowa and Cecylia Rauszer in Memoriam, Bulletin of the Section of Logic*25 (3–4), 1996 (a special issue), pp. 174–184.Google Scholar - 262.Z. Pawlak and A. Skowron, Rough membership functions, in: R.R. Yaeger, M. Fedrizzi, and J. Kacprzyk (eds.),
*Advances in the Dempster—Shafer Theory of Evidence*, John Wiley and Sons Inc., New York, 1994, pp. 251–271.Google Scholar - 263.Z. Pawlak and A. Skowron, Rough membership functions: A tool for reasoning with uncertainty, in: C. Rauszer (ed.),
*Algebraic Methods in Logic and Computer Science*, Banach Center Publications 28, Polish Academy of Sciences, Warsaw, 1993, pp. 135–150.Google Scholar - 264.Z. Pawlak and A. Skowron, A rough set approach for decision rules generation, in:
*Proceedings: the Workshop W12: The Management of Uncertainty in AI at the 13th IJCAI*, Chambery Savoie, France, August 30, 1993.Google Scholar - 265.Z. Pawlak and R. Słowiński, Decision analysis using rough sets,
*International Transactions in Operational Research*1 (1), 1994, pp. 107–114.MATHCrossRefGoogle Scholar - 266.Z. Pawlak and R. Słowiński, Rough set approach to multi-attribute decision analysis,
*European Journal of Operational Research*72, 1994, pp. 443–45.MATHCrossRefGoogle Scholar - 267.W. Pedrycz, Shadowed sets: bridging fuzzy and rough sets, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision-Making*, Springer-Verlag, Singapore, 1999, pp. 179–199.Google Scholar - 268.J. F. Peters, L. Han, and S. Ramanna,
*Rough neural computing in signal processing*, Computational Intelligence: An Intern. Journal, 17, 2001, pp. 493–513.MathSciNetGoogle Scholar - 269.J. E. Peters, W. Pedrycz, S. Ramanna, A. Skowron, and Z. Suraj, Approximate real - time decision making: Concepts and rough Petri net models,
*Intern. Journal Intelligent Systems*, 14(8), 1999, pp. 805840.Google Scholar - 270.J. E. Peters and S. Ramanna, A rough set approach to assessing software quality: concepts and rough Petri net models, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision—Making*, Springer-Verlag, Singapore, 1999, pp. 349–380.Google Scholar - 271.J. E. Peters, S. Ramanna, A. Skowron, and Z. Suraj, Graded transitions in rough Petri nets, in:
*Proceedings: the 7th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’99), Aachen, Germany, September 1999.Google Scholar - 272.J. F. Peters, A. Skowron, and Z. Suraj, An application of rough set methods in control design,
*Fundamenta Inforcaticae*, 43, 2000, pp. 269–290.MathSciNetMATHGoogle Scholar - 273.J. E. Peters, A. Skowron, and Z. Suraj, An application of rough set methods in control design, in:
*Proceedings: the Workshop on Con-currency, Specification and Programming*(CSP’99), Warsaw, Poland, September 1999, pp. 214–235.Google Scholar - 274.J. E. Peters, A. Skowron, Z. Suraj, S. Ramanna, and A. Paryzek, Modeling real-time decision-making systems with rough fuzzy Petri nets, in:
*Proceedings: the Sixth European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, Verlag Mainz, Aachen, pp. 985–989.Google Scholar - 275.L. Polkowski, On connection synthesis via rough mereology,
*Fundamenta Informaticae*, 46, 2001, pp. 83–96.MathSciNetMATHGoogle Scholar - 276.L. Polkowski, Approximate mathematical morphology. Rough set approach, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision-Making*, Springer-Verlag, Singapore, 1999, pp. 151–162.Google Scholar - 277.L. Polkowski, Rough set approach to mathematical morphology: Approximate compression of data, in:
*Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge–Based Systems*(IPMU’98), La Sorbonne, Paris, France, July, pp. 1183–1189.Google Scholar - 278.L. Polkowski and M. Semeniuk-Polkowska, Towards usage of natural language in approximate computation: A granular semantics employing formal languages over mereological granules of knowledge,
*Scheda Informaticae (Fasc. Jagiellonian University)*, 10, 2000, pp. 131–145.Google Scholar - 279.L. Polkowski and M. Semeniuk-Polkowska, Concerning the Zadeh idea of computing with words: Towards a formalization, in:
*Proceedings: Workshop on Robotics, Intelligent Control and Decision Support Systems*, Polish-Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 62–67.Google Scholar - 280.L. Polkowski and A. Skowron, Rough mereology in information systems with applications to qualitative spatial reasoning,
*Fundamenta Informaticae*, 43, 2000, pp. 291–320.MathSciNetMATHGoogle Scholar - 281.L. Polkowski and A. Skowron, Towards adaptive calculus of granules, in: L.A. Zadeh and J. Kacprzyk (eds.),
*Computing with Words in Information/Intelligent Systems*, Physica-Verlag, Heidelberg, 1999, pp. 201–228.CrossRefGoogle Scholar - 282.L. Polkowski and A. Skowron, Grammar systems for distributed synthesis of approximate solutions extracted from experience, in: Gh. Paun, A.Salomaa (eds.),
*Grammar Systems for Multi-agent Systems*, Gordon and Breach Science Publishers, Amsterdam, 1999, pp. 316–333.Google Scholar - 283.L. Polkowski and A. Skowron, Rough mereology and analytical morphology, in: E. Orlowska (ed.),
*Incomplete Information: Rough Set Analysis*, Physica-Verlag, Heidelberg, 1998, pp. 399–437.Google Scholar - 284.L. Polkowski and A. Skowron, Rough sets: A perspective, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 31–56.CrossRefGoogle Scholar - 285.L. Polkowski and A. Skowron, Introducing the book, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 3–9.CrossRefGoogle Scholar - 286.L. Polkowski and A. Skowron, Introducing the book, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 1–9.CrossRefGoogle Scholar - 287.L. Polkowski and A. Skowron, Rough mereological foundations for design, analysis, synthesis, and control in distributed systems,
*Information Sciences. An International Journal*104(1–2), Elsevier Science, New York, 1998, pp. 129–156.Google Scholar - 288.L. Polkowski and A. Skowron, Rough mereological approach–A survey,
*Bulletin of International Rough Set Society 2*(1), 1998, pp. 1–13.MathSciNetGoogle Scholar - 289.L. Polkowski and A. Skowron, Rough mereological formalization, in: W. Pedrycz and J. F. Peters III (eds.),
*Computational Intelligence and Software Engineering*, World Scientific, Singapore, 1998, pp. 237–267.CrossRefGoogle Scholar - 290.L. Polkowski and A. Skowron, Towards adaptive calculus of granules, in:
*Proceedings: the FUZZ-IEEE International Conference, 1998 IEEE World Congress on Computational Intelligence*(WCCI’98), Anchorage, Alaska, May 1998, pp. 111–116.Google Scholar - 291.L. Polkowski and A. Skowron, Synthesis of complex objects: Rough mereological approach, in:
*Proceedings: Workshop W8 on Synthesis of Intelligent Agents from Experimental Data*(at ECAI’98), Brighton, UK, August 1998, pp. 1–10.Google Scholar - 292.L. Polkowski and A. Skowron, Calculi of granules for adaptive distributed synthesis of intelligent agents founded on rough mereology, in:
*Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, Verlag Mainz, Aachen, 1998, pp. 90–93.Google Scholar - 293.L. Polkowski and A. Skowron, Towards information granule calculus, in:
*Proceedings: the Workshop on Concurrency, Specification and Programming*(CSP’98), Berlin, Germany, September 1998, Humboldt University Berlin, Informatik Berichte 110, pp. 176–194.Google Scholar - 294.L. Polkowski and A. Skowron, Synthesis of decision systems from data tables, in: T.Y. Lin, N. Cercone (eds.),
*Rough sets and data mining: Analysis of imprecise data*, Kluwer Academic Publishers, Dordrecht, 1997, pp. 259–299.Google Scholar - 295.L. Polkowski and A. Skowron, Decision algorithms: A survey of rough set theoretic methods,
*Fundamenta Informaticae*30 (3–4), 1997, pp. 345–358.MathSciNetMATHGoogle Scholar - 296.L. Polkowski and A. Skowron, Approximate reasoning in distributed systems, in:
*Proceedings of the Fifth European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, Verlag Mainz, Aachen, 1997, pp. 1630–1633.Google Scholar - 297.L. Polkowski and A. Skowron, Mereological foundations for approximate reasoning in distributed systems (plenary lecture), in:
*Proceedings of the Second Polish Conference on Evolutionary Algorithms and Global Optimization*, Rytro, September 1997, Warsaw University of Technology Press, 1997, pp. 229–236.Google Scholar - 298.L. Polkowski and A. Skowron, Adaptive decision—making by systems of cooperative intelligent agents organized on rough mereological principles,
*Intelligent Automation and Soft Computing, An International Journal*2 (2), 1996, pp. 121–132.MathSciNetGoogle Scholar - 299.L. Polkowski and A. Skowron, Rough mereology: A new paradigm for approximate reasoning, Intern.
*Journal Approx. Reasoning*15 (4), 1996, pp. 333–365.MathSciNetMATHCrossRefGoogle Scholar - 300.L. Polkowski and A. Skowron, Analytical morphology: Mathematical morphology of decision tables,
*Fundamenta Info i rnaticae*27 (2–3), 1996, pp. 255–271.MathSciNetMATHGoogle Scholar - 301.L. Polkowski and A. Skowron, Rough mereological controller, in:
*Proceedings of The Fourth European Congress on Intelligent Techniques and Soft Computing*(EUFIT’96), Aachen, Germany, September 1996, Verlag Mainz, Aachen, 1996, pp. 223–227.Google Scholar - 302.L. Polkowski and A. Skowron, Learning synthesis scheme in intelligent systems, in:
*Proceedings: the 3rd International Workshop on Multi—strategy Learning*(MSL-96), Harpers Ferry, West Virginia, May 1996, George Mason University and AAAI Press 1996, pp. 57–68.Google Scholar - 303.L. Polkowski and A. Skowron, Implementing fuzzy containment via rough rough inclusions: rough mereological approach to distributed problem solving, in:
*Proceedings: the 4th IEEE International Conference on Fuzzy Systems*(FUZZ-IEEE’96), New Orlean LA, September 1996, pp. 1147–1153.CrossRefGoogle Scholar - 304.L. Polkowski, A. Skowron, and J. Komorowski, Approximate case-based reasoning: A rough mereological approach, in:
*Proceedings: the.4th German Workshop on Case-Based Reasoning. System Development and Evaluation*, Berlin, Germany, April 1996, Informatik Berichte 55, Humboldt University, Berlin, pp. 144–151.Google Scholar - 305.B. Prçdki, R. Słowiński, J. Stefanowski, R. Susmaga, and S. Wilk, ROSE — software implementation of the rough set theory, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98),Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 605–608.Google Scholar - 306.M. Quafafou, a—RST: A generalization of Rough Set Theory,
*Information Systems*, 1999, to appear.Google Scholar - 307.M. Quafafou, Learning flexible concepts from uncertain data, in:
*Proceedings: the 10th International Symposium on Methodologies for Intelligent Systems*(ISMIS’97), Charlotte NC, 1997.Google Scholar - 308.M. Quafafou and M. Boussouf, Generalized rough sets based feature selection,
*Intelligent Data Analysis*Journal 4 (1), 1999.Google Scholar - 309.M. Quafafou and M. Boussouf, Induction of strong feature subsets, in:
*Proceedings: the First European Symposium on Principles of Data Mining and Knowledge Discovery*, Trondheim, Norway, June 1997, LNAI 1263, Springer—Verlag, Berlin, 1997.Google Scholar - 310.S. Radev, Argumentation systems,
*Fundamenta Informaticae*28, 1996, pp. 331–346.MathSciNetMATHGoogle Scholar - 311.Z. W. Ras, Discovering rules in information trees, in:
*Proceedings: Principles of Data Mining and Knowledge Discovery*(PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer—Verlag, Berlin, 1999, pp. 518–523.Google Scholar - 312.Z. W. Ras, Intelligent query answering in DAKS, in: O. Pons, M. A. Vila, and J. Kacprzyk (eds.),
*Knowledge Management in Fuzzy Databases*, Physica—Verlag, Heidelberg, 1999, pp. 159–170.Google Scholar - 313.Z. W. Ras, Answering non-standard queries in distributed knowledge—based systems, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica Verlag, Heidelberg, 1998, pp. 98–108.CrossRefGoogle Scholar - 314.Z. W. Ras, Handling queries in incomplete CKBS through knowledge discovery, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 194–201.CrossRefGoogle Scholar - 315.Z. W. Ras, Knowledge discovery objects and queries in distributed knowledge systems, in:
*Proceedings: Artificial Intelligence and Symbolic Computation*(AISC’98), LNAI 1476, Springer—Verlag, Berlin, 1998, pp. 259–269.CrossRefGoogle Scholar - 316.Z. W. Ras and A. Bergmann, Maintaining soundness of rules in distributed knowledge systems, in:
*Proceedings: the Workshop on Intelligent Information Systems*(IIS’98), Malbork, Poland, June 1998, Polish Academy of Sciences, Warsaw, 1998, pp. 29–38.Google Scholar - 317.Z. W. Ras and J. M. Zytkow, Mining for attribute definitions in a distributed two-layered DB system,
*Journal of Intelligent Information Systems*14 (2–3), 2000, in print.Google Scholar - 318.Z. W. Ras and J. M. Zytkow, Mining distributed databases for attribute definitions, in:
*Proceedings: SPIE. Data Mining and Knowledge Discovery: Theory*, Tools, and Technology, Orlando, Florida, April 1999, pp. 171–178.Google Scholar - 319.Z. W. Ras and J. M. Zytkow, Discovery of equations and the shared operational semantics in distributed autonomous databases, in:
*Proceedings: Methodologies for Knowledge Discovery and Data Mining*(PAKKD’99), Beijing, China, 1999, LNAI 1574, Springer-Verlag, Berlin, 1999, pp. 453–463.CrossRefGoogle Scholar - 320.L. Rossi, R. Słowiński, and R. Susmaga,
*Rough set approach to evaluation of storm water pollution*, International Journal of Environment and Pollution, to appear.Google Scholar - 321.L. Rossi, R. Słowiński, and R. Susmaga, Application of the rough set approach to evaluate storm water pollution, in:
*Proceedings: the 8th International Conference on Urban Storm Drainage*(8th ICUSD), Sydney, Australia, 1999, vol. 3, pp. 1192–1200.Google Scholar - 322.H.Sakai, Some issues on non—deterministic knowledge bases with incomplete and selective information, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 424–431.CrossRefGoogle Scholar - 323.H. Sakai, Another fuzzy Prolog, in: Proceedings: The Fourth International Workshop on Rough Sets,
*Fuzzy Sets*, and Machine Discovery (RSFD’96), Tokyo, November 1996, pp. 261–268.Google Scholar - 324.H. Sakai and A. Okuma, An algorithm for finding equivalence relations from tables with non—deterministic information, in:
*Proceedings: the 7th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing*(RSFDGrC99), LNAI 1711, Springer—Verlag, Berlin, 1999, pp. 64–72.Google Scholar - 325.M. Semeniuk—Polkowska, On Applications of Rough Set Theory in Humane Sciences (in Polish), Warsaw University Press, Warsaw, 2000.Google Scholar
- 326.M. Semeniuk—Polkowska, On Rough Set Theory in Library Sciences (in Polish), Warsaw University Press, Warsaw, 1996.Google Scholar
- 327.V. I. Shevtchenko, On the depth of decision trees for diagnosis of non—elementary faults in circuits (in Russian), in:
*Proceedings: the 9th Workshop on Synthesis and Complexity of Control Systems*, Nizhny Novgorod, Russia, 1998, Moscow State University Publishers, Moscow, 1999, pp. 94–98.Google Scholar - 328.V. I. Shevtchenko, On complexity of non—elementary fault detection in circuits (in Russian), in:
*Proceedings: the 12th International Conference on Problems of Theoretical Cybernetics*, Nizhny Novgorod, Russia, 1999, Moscow State University Publishers, Moscow, 1999, p. 254.Google Scholar - 329.V. I. Shevtchenko, On complexity of confused connection diagnosis in circuits (in Russian), in:
*Proceedings: the 9th All—Russian Conference on Mathematical Methods of Pattern Recognition*, Moscow, Russia, 1999, pp. 129–131.Google Scholar - 330.V. I. Shevtchenko, On the depth of decision trees for diagnosing of nonelementary faults in circuits, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 517–520.Google Scholar - 331.V. I. Shevtchenko, On complexity of “OR” (“AND”)—closing detection in circuits (in Russian), in:
*Proceedings: the International Conference on Discrete Models in Theory of Control Systems*, Moscow, Russia, 1997 pp. 61–62.Google Scholar - 332.V. I. Shevtchenko, On complexity of “OR” (“AND”)—closing diagnosis in circuits (in Russian), in:
*Proceedings: the 8th All-Russian Conference on Mathematical Methods of Pattern Recognition*, Moscow, Russia, 1997, pp. 125–126.Google Scholar - 333.A. Skowron and J. Stepaniuk, Information granules: Towards foundations for spatial and temporal reasoning,
*Journal of Indian Science Academy*, in print.Google Scholar - 334.A. Skowron and J. Stepaniuk, Information granules in distributed systems, in:
*Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing*(RSFDGrC’99), Ube — Yamaguchi, Japan, November 1999, Lecture Notes in Artificial Intelligence 1711, Springer—Verlag, Berlin, 1999, pp. 357–365.Google Scholar - 335.A. Skowron and J. Stepaniuk, Towards discovery of information granules, in:
*Proceedings: Principles of Data Mining and Knowledge Discovery*(PKDD’99), Prague, the Czech Republic, September 1999, LNAI 1704, Springer-Verlag, Berlin, 1999, pp. 542–547.Google Scholar - 336.A. Skowron and J. Stepaniuk, Information granules and approximation spaces, in:
*Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge — Based Systems*(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 13541361.Google Scholar - 337.A. Skowron and J. Stepaniuk, Information Reduction Based on Constructive Neighborhood Systems, in:
*Proceedings: the 5th International Workshop on Rough Sets Soft Computing*(RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, October 1997, pp. 158–160.Google Scholar - 338.A. Skowron and J. Stepaniuk, Constructive information granules, in:
*Proceedings: the 15th IMACS World Congress on Scientific Computation, Modeling and Applied Mathematics*, Berlin, Germany, August 1997; also in: Artificial Intelligence and Computer Science 4, pp. 625630.Google Scholar - 339.A. Skowron and J. Stepaniuk, Tolerance approximation spaces,
*Fundamenta Informaticae*27 (2–3), 1996, pp. 245–253.MathSciNetMATHGoogle Scholar - 340.A. Skowron, J. Stepaniuk, and S. Tsumoto, Information granules for spatial reasoning,
*Bulletin Intern. Rough Set Society*3 (4), 1999, pp. 147–154.Google Scholar - 341.A. Skowron and Z. Suraj, A parallel algorithm for real-time decision making: A rough set approach,
*Journal of Intelligent Information Systems*7, 1996, pp. 5–28.CrossRefGoogle Scholar - 342.K. Słowiński and J. Stefanowski, Medical information systems - problems with analysis and ways of solutions, in: S. K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision-Making*, Springer-Verlag, Singapore, 1999, pp. 301.Google Scholar - 343.R. Słowiński, Rough set data analysis–a new way of solving some decision problems in transportation,
*Proceedings: Modeling and Management in Transportation*(MMT’99), Krakow–Poznan, October 1999, pp. 63–66.Google Scholar - 344.R. Słowiński, Multi-criterial decision support based on rules induced by rough sets (in Polish), in: T.Trzaskalik (ed.),
*Metody i Zastosowania Badari Operacyjnych*, Part 2, Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowice, 1998, pp. 19–39.Google Scholar - 345.R. Słowiński and J. Stefanowski, Handling inconsistency of information with rough sets and decision rules, in:
*Proceedings: Intern. Conference on Intelligent Techniques in Robotics, Control and Decision Making*, Polish—Japanese Institute of Information Technology, Warsaw, February 1999, pp. 74–81.Google Scholar - 346.R. Słowiński and J. Stefanowski, Rough family — software implementation of the rough set theory, in: L. Polkowski, A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica-Verlag, Heidelberg, 1998, pp. 581–586.Google Scholar - 347.R. Słowiński, J. Stefanowski, S. Greco, and B. Matarazzo,
*Rough sets processing of inconsistent information in decision analysis*, Control and Cybernetics, to appear.Google Scholar - 348.R. Słowiński and D. Vanderpooten, A generalized definition of rough approximations based on similarity,
*IEEE Transactions on Data and Knowledge Engineering, to appear*.Google Scholar - 349.R. Słowiński, C. Zopounidis, A. I. Dimitras, and R. Susmaga, Rough set predictor of business failure, in: R. A. Ribeiro, H.-J. Zimmermann, R. R. Yager, and J. Kacprzyk (eds.),
*Soft Computing in Financial Engineering, Physica—Verlag*, Heidelberg, 1999, pp. 402–424.Google Scholar - 350.J. Stefanowski and A. Tsoukias, Incomplete information tables and rough classification,
*Computational Intelligence: An Intern. Journal*, 17, 2001, pp. 545–566.Google Scholar - 351.J. Stepaniuk, Rough set based data mining in diabetes mellitus data table, in:
*Proceedings: the 6th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’98), Aachen, Germany, September 1998, pp. 980–984; for extended version see:: Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems (ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer—Verlag, Berlin, 1999.Google Scholar - 352.J. Stepaniuk, Optimizations of rough set model,
*Fundamenta Informaticae*36 (2–3), 1998, pp. 265–283.MathSciNetMATHGoogle Scholar - 353.J. Stepaniuk, Rough relations and logics, in: L. Polkowski, A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 248–260.Google Scholar - 354.J. Stepaniuk, Approximation spaces, reducts and representatives, in: L. Polkowski, A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 109–126.CrossRefGoogle Scholar - 355.J. Stepaniuk, Approximation spaces in extensions of rough set theory, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer—Verlag, Berlin, 1998, pp. 290–297.Google Scholar - 356.J. Stepaniuk, Rough sets similarity based learning, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’ 97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 1634–1639.Google Scholar - 357.J. Stepaniuk, Similarity relations and rough set model, in: Proceedings: the International Conference MENDEL97, Brno, the Czech Republic, June 1997.Google Scholar
- 358.J. Stepaniuk, Attribute discovery and rough sets, in:
*Proceedings:the First European Symposium on Principles of Data Mining and Knowledge Discovery*(PKDD’97), Trondheim, Norway, June 1997, LNAI 1263, Springer—Verlag, Berlin, 1997, pp. 145–155.Google Scholar - 359.J. Stepaniuk, Searching for optimal approximation spaces, in:
*Proceedings: the 6th International Workshop on Intelligent Information Systems*(ISMIS’ 97 ), Zakopane, Poland, June 1997, Publ. Institute of Computer Science, Polish Academy of Sciences, pp. 86–95.Google Scholar - 360.Z. Suraj, An application of rough sets and Petri nets to controller design, in: Workshop on Robotics,
*Intelligent Control and Decision Support Systems*, Polish-Japanese Institute of Information Technology, Warsaw, Poland, February 1999, pp. 86–96.Google Scholar - 361.Z. Suraj, The synthesis problem of concurrent systems specified by dynamic information systems, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems*, Physica—Verlag, Heidelberg, 1998, pp. 418–448.CrossRefGoogle Scholar - 362.Z. Suraj, Reconstruction of cooperative information systems under cost constraints: A rough set approach,
*Journal of Information Sciences 111*, 1998, pp. 273–291.MATHCrossRefGoogle Scholar - 363.Z. Suraj, Reconstruction of cooperative information systems under Cost constraints: A rough set approach, in:
*Proceedings: the First International Workshop on Rough Sets and Soft Computing*(RSSC’97), Durham NC, March 1997, pp. 364–371.Google Scholar - 364.Z. Suraj, Discovery of concurrent data models from experimental tables,
*Fundamenta Informaticae*28 (3–4), 1996, pp. 353–376.MathSciNetMATHGoogle Scholar - 365.R. Susmaga, R. Słowiński, S. Greco, and B. Matarazzo, Computation of reducts for multi-attribute and multi-criteria classification, in:
*Proceedings: the 7th Workshop on Intelligent Information Systems*(IIS’99), Ustron, Poland, June 1999, pp. 154–163.Google Scholar - 366.M. Szczuka, Refining decision classes with neural networks, in:
*Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge—Based Systems*(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1370–1375.Google Scholar - 367.M. Szczuka, Rough Sets and Artificial Neural Networks, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 2. Applications,
*Case Studies and Software Systems, Physica—Verlag*, Heidelberg, 1998, pp. 449–470.CrossRefGoogle Scholar - 368.M. Szczuka, Rough set methods for constructing neural networks, in:
*Proceedings: the 3rd Biennial Joint Conference On Engineering Systems Design Analysis, Session on Expert Systems*, Montpellier, France, 1996, pp. 9–14.Google Scholar - 369.M. Szczuka, D. Slgzak, and S. Tsumoto, An application of reduct networks to medicine–chaining decision rules, in:
*Proceedings: the 5th International Workshop on Rough Sets and Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences*(JCIS’97), Duke University, Durham NC, USA, 1997, pp. 395–398.Google Scholar - 370.P. Synak, Adaptation of decomposition tree to extended data, in:
*Proceedings SCI’2001: World Multiconference on Systemics, Cybernetics and Informatics*, Orlando, Fla., Orlando, 2001, vol. VII, pp. 552–556.Google Scholar - 371.D. Slgzak, Foundations of entropy based bayesian networks: Theoretical results rough set based extraction from data, in:
*Proceedings: the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge—Based Systems*(IPMU’00), Madrid, Spain, July 2000, in print.Google Scholar - 372.D. lçzak, Normalized decision functions and measures for inconsistent decision tables analysis, Fundamenta Informaticae, in print.Google Scholar
- 373.D. lçzak, Decomposition and synthesis of decision tables with respect to generalized decision functions, in: S. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision-Making*, Springer-Verlag, Singapore, 1999, pp. 110–135.Google Scholar - 374.D. lçzak, Decision information functions for inconsistent decision tables analysis, in:
*Proceedings: the 7th European Congress on Intelligent Techniques Soft Computing*(EUFIT’99), Aachen, Germany, p. 127.Google Scholar - 375.D. Slgzak, Searching for Dynamic Reducts in Inconsistent Decision Tables, in:
*Proceedings: the 7th International Conference on Information Processing and Management of Uncertainty in Knowledge—Based Systems*(IPMU’98), La Sorbonne, Paris, France, July 1998, pp. 1362–1369.Google Scholar - 376.D. Slgzak, Searching for frequential reducts in decision tables with uncertain objects, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 52–59.CrossRefGoogle Scholar - 377.D. Slgzak, Rough set reduct networks, in:
*Proceedings: the 5th Intern. Workshop on Rough Sets and Soft Computing (RSSC’97) at*the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, 1997, pp. 77–81.Google Scholar - 378.D. Slgzak, Attribute set decomposition of decision tables, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, Verlag Mainz, Aachen, 1997, pp. 236–240.Google Scholar - 379.D. Slgzak, Decision value oriented decomposition of data tables, in:
*Proceedings: the 10th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems*(ISMIS’97), Charlotte NC, October 1997, LNAI 1325, Springer—Verlag, Berlin, 1997, pp. 487–496.Google Scholar - 380.D. Slgzak, Approximate reducts in decision tables, in:
*Proceedings: the 6th International Conference, Information Processing and Management of Uncertainty in Knowledge-Based Systems*(IPMU’96), Granada, Spain, July 1996, pp. 1159–1164.Google Scholar - 381.D. Slgzak, Tolerance dependency model for decision rules generation, in: Proceedings: the 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD’96), Tokyo, Japan, November 1996, pp. 131–138.Google Scholar
- 382.D. Slgzak and M. Szczuka, Hyperplane—based neural networks for real—valued decision tables, in: Proceedings: the 5th International Workshop on Rough Sets Soft Computing (RSSC’97) at the 3rd Annual Joint Conference on Information Sciences (JCIS’97), Durham NC, 1997, pp. 265268.Google Scholar
- 383.D. lçzak and J. Wróblewski, Classification algorithms based on linear combinations of features, in:
*Proceedings: Principles of Data Mining and Knowledge Discovery*(PKDD’99), Prague, Czech Republic, September 1999, LNAI 1704, Springer-Verlag, Berlin, 1999, pp. 548–553.Google Scholar - 384.I. Tentush, On minimal absorbents and closure properties of rough inclusions: new results in rough set theory, Ph.D. Dissertation, supervisor L. Polkowski,
*Institute of Fundamentals of Computer Science*, Polish Academy of Sciences, Warsaw, Poland, 1997.Google Scholar - 385.S. Tsumoto, Induction of expert decision rules using rough sets and set—inclusion, in: S.K. Pal and A. Skowron (eds.),
*Rough Fuzzy Hybridization: A New Trend in Decision—Making*, Springer—Verlag, Singapore, 1999, pp. 316–329.Google Scholar - 386.S. Tsumoto, Discovery of rules about complications, in:
*Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing*(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, Lecture Notes in AI 1711, Springer—Verlag, Berlin, 1999, pp. 29–37.Google Scholar - 387.S. Tsumoto, Extraction of expert’s decision rules from clinical databases using rough set model, J. Intelligent data Analysis 2 (3), 1998.Google Scholar
- 388.S. Tsumoto, Automated induction of medical expert system tules from clinical databases based on rough set theory,
*Information Sciences*112, 1998, pp. 67–84.CrossRefGoogle Scholar - 389.V. Uma Maheswari, A. Siromoney, K. M. Mehata, and K. Inoue, The variable precision rough set inductive logic programming model and strings,
*Computational Intelligence: An Intern. Journal*, 17, 2001, pp. 460–471.Google Scholar - 390.A. Wakulicz—Deja, M. Boryczka, and P. Paszek, Discretization of continuous attributes on decision system in mitochondrial encephalomyopathies, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, 1998, pp. 483–490.Google Scholar - 391.A. Wakulicz—Deja, B. Marszal—Paszek, P. Paszek, and E. Emich—Widera, Applying rough sets to diagnose in children’s neurology, in:
*Proceedings: the 6th International Conference Information Processing and Management of Uncertainty in Knowledge-Base Systems*(IPMU’96), Granada, Spain, 1996, pp. 1463–1468.Google Scholar - 392.A. Wakulicz—Deja and P. Paszek, Optimalization of decision problems on medical knowledge bases, in:
*Proceedings: Intelligent Information Systems VI*, Zakopane, Poland, 1997, pp. 204–210.Google Scholar - 393.A. Wakulicz—Deja and P. Paszek, Optimalization of decision problems on medical knowledge bases, in:
*Proceedings: the 5th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’97), Aachen, Germany, September 1997, Verlag Mainz, Aachen, 1997, pp. 1607–1610.Google Scholar - 394.A. Wakulicz—Deja and P. Paszek, Diagnose progressive encephalopathy applying the rough set theory,
*International Journal of Medical Informatics*46, 1997, pp. 119–127.CrossRefGoogle Scholar - 395.A. Wakulicz—Deja and P. Paszek, Optimalization of diagnose in progressive encephalopathy applying the rough set theory, in:
*Proceedings: the /4th European Congress on Intelligent Techniques and Soft Computing*(EUFIT’96), Aachen, Germany, Verlag Mainz, Aachen, 1996, pp. 192–196.Google Scholar - 396.A. Wakulicz—Deja, P. Paszek, and B. Marszal—Paszek, Optymalizacja procesu podejmowania decyzji (diagnozy) w medycznych bazach wiedzy (in Polish), in:
*Proceedings: II Krajowa Konferencja Techniki Informatyczne w Medycynie*, Jaszowiec, Poland, 1997, pp. 279–286.Google Scholar - 397.H. Wang and Nguyen Hung Son, Text classification using Lattice Machine, in:
*Proceedings: the 11th International Symposium on Methodologies for Intelligent Systems, Foundations of Intelligent Systems*(ISMIS’99), Warsaw, Poland, June 1999, LNAI 1609, Springer—Verlag, Berlin, 1999.Google Scholar - 398.A. Wasilewska, Topological rough algebras, in: T. Y. Lin and N. Cercone (eds.), Rough Sets and Data Mining. Analysis of Imprecise Data, Kluwer Academic Publishers, Dordrecht, 1997, pp. 411–425.CrossRefGoogle Scholar
- 399.A. Wasilewska, E. Menasalvas, and M. Hadjimichael, A generalization model for implementing a Data Mining system, in:
*Proceedings: IFSA’99*, Taipei, Taiwan, August 1999, pp. 245–251.Google Scholar - 400.A. Wasilewska and L. Vigneron, Rough algebras and automated deduction, in: L. Polkowski and A. Skowron (eds.), Rough Sets in Knowledge Discovery 1. Methodology and Applications, Physica—Verlag, Heidelberg, 1998, pp. 261–275.Google Scholar
- 401.A. Wasilewska and L. Vigneron, On Generalized rough sets, in:
*Proceedings: the 5th Workshop on Rough Sets and Soft Computing*(RSSC’97) at the 3rd Joint Conference on Information Sciences (JCIS’97), Research Triangle Park NC, March 1997.Google Scholar - 402.P. Wojdyllo, Wavelets, rough sets and artificial neural networks in EEG analysis, in:
*Proceedings: First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, LNAI 1424, Springer—Verlag, Berlin, pp. 444–449.Google Scholar - 403.J. Wróblewski, Genetic algorithms in decomposition and classification problem, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications*, Case Studies and Software Systems, Physica—Verlag, Heidelberg, 1998, pp. 471–487.CrossRefGoogle Scholar - 404.J. Wróblewski, Covering with reducts — a fast algorithm for rule generation, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, Poland, June 1998, LNAI 1424, Springer-Verlag, Berlin, 1998, pp. 402–407.Google Scholar - 405.J. Wróblewski, A Parallel Algorithm for Knowledge Discovery System, in:
*Proceedings: the International Conference on Parallel Computing in Electrical Engineering*(PARELEC’98), Bialystok, Poland, September 1998, The Press Syndicate of the Technical University of Bialystok, 1998, pp. 228–230.Google Scholar - 406.J. Wróblewski, Theoretical Foundations of Order-Based Genetic Algorithms,
*Fundamenta Inforrnaticae*28 (3–4), 1996, pp. 423–430.MATHGoogle Scholar - 407.L. Vigneron, Automated deduction techniques for studying rough algebras,
*Fundamenta Info, maticae*33 (1), 1998, pp. 85–103.MathSciNetMATHGoogle Scholar - 408.L. Vigneron and A. Wasilewska, Rough sets based proofs visualisation, in:
*Proceedings: the 18th International Conference of the North American Fuzzy Information Processing Society*(NAFIPS’99) (invited session on Granular Computing and Rough Sets), New York NY, 1999, pp. 805–808.Google Scholar - 409.L. Vigneron and A. Wasilewska, Rough sets congruences and diagrams, in:
*Proceedings: the 16th European Conference on Operational Research*(EURO XVI), Brussels, Belgium, July 1998.Google Scholar - 410.L. Vigneron and A. Wasilewska, Rough diagrams, in:
*Proceedings: the sixth Workshop on Rough Sets, Data Mining and Granular Computing*(RSDMGrC’98) at the 4th Joint Conference on Information Sciences (JCIS’98), Research Triangle Park NC, October 1998.Google Scholar - 411.L. Vigneron and A. Wasilewska, Rough and modal algebras, in:
*Proceedings: the International Multi—conference*(Computational Engineering in Systems Applications), Symposium on Modelling, Analysis and Simulation (IMACS/IEEE CESA’96), Lille, France, July 1996, pp. 1107–1112.Google Scholar - 412.Zhang Qi and Han Zhenxiang,
*Rough sets: theory and applications, Control Theory and Applications*16(2), 1999, pp. 153–157, S. China Univ. Technology Press, Guangzhou, China.Google Scholar - 413.Zhang Qi and Han Zhenxiang,
*A new method for alarm processing in power systems using rough set theory*, Electric Power 31(4), 1998, pp. 32–38, China Electric Power Press, Beijing.Google Scholar - 414.Zhang Qi, Han Zhenxiang, and Wen Fushuan, Analysis of Rogers ratio table for transformer fault diagnosis using rough set theory, in:
*Proceedings: CUS—EPSA 88*, Harbin, China, 1998, pp. 386–391.Google Scholar - 415.Zhang Qi, Han Zhenxiang, and Wen Fushuan, A new approach for fault diagnosis in power systems based on rough set theory, in:
*Proceedings: APSCOM’97*, Hong Kong, 1997, pp. 597–602.Google Scholar - 416.W. Ziarko, Probabilistic decision tables in the variable precision rough set model,
*Computational Intelligence: An Intern. Journal*, 17, 2001, pp. 593–603.Google Scholar - 417.W. Ziarko, Decision making with probabilistic decision tables, in::
*Proceedings: the 7th International Workshop on Rough Sets, Fuzzy Sets, Data Mining and Granular-Soft Computing*(RSFDGrC’99), Ube—Yamaguchi, Japan, November 1999, Lecture Notes in Artificial Intelligence 1711, Springer—Verlag, Berlin, 1999, pp. 463–471.Google Scholar - 418.W. Ziarko, Rough sets as a methodology for data mining, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 1. Methodology and Applications*, Physica—Verlag, Heidelberg, 1998, pp. 554–576.Google Scholar - 419.W. Ziarko, KDD—R: rough sets based data mining system, in: L. Polkowski and A. Skowron (eds.),
*Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems*, Physica—Verlag, Heidelberg, 1998, pp. 598–601.Google Scholar - 420.W. Ziarko, Approximation region—based decision tables, in:
*Proceedings: the First International Conference on Rough Sets and Current Trends in Computing*(RSCTC’98), Warsaw, June 1998, Lecture Notes in Artificial Intelligence 1424, Springer—Verlag, Berlin, 1998, pp. 178185.Google Scholar - 421.C. Zopounidis, R. Slowirnski, M. Doumpos, A.I. Dimitras, and R. Susmaga, Business failure prediction using rough sets — a comparison with multivariate analysis techniques,
*Fuzzy Economic Review*4, 1999(1), pp. 3–33.Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2002