Skip to main content

Visuomotor Control in Flies and Behavior — based Agents

  • Chapter
Biologically Inspired Robot Behavior Engineering

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 109))

Abstract

The development of artificial agents or robots using inspiration from living organisms is a promising approach to the study of biological systems, complementing traditional approaches in biology and the life sciences. The simulation of simple life forms and the implementation of behavioral models in robots are especially useful ways of testing models of biological information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ancona N, Poggio T (1993) Optical flow from 1D correlation: Application to a simple ‘ITC detector. Memo No. 1375, AI Laboratory, MIT, Cambridge, MA

    Google Scholar 

  • Braitenberg V (1984) Vehicles - experiments in synthetic psychology. The MIT Press, Cambridge, MA

    Google Scholar 

  • Brooks RA (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2: 14–23

    Article  MathSciNet  Google Scholar 

  • Billthoff HH (1982) Drosophila mutants disturbed in visual orientation: II. Mutants affected in movement and position computation. Biological Cybernetics 45: 71–77

    Article  Google Scholar 

  • Carpenter RHS (1979) Movements in the eyes. Pion, London

    Google Scholar 

  • Chapuis A, Droz E (1958) Automata: A historical and technological study, transl. Reid BA, Batsford Ltd, London

    Google Scholar 

  • Cliff DT, Harvey I, Husbands P (1993) Explorations in evolutionary robotics. Adaptive Behavior 2: 73–110

    Article  Google Scholar 

  • Collett TS (1980) Angular tracking and the optomotor response–An analysis of the visual reflex interaction in a hoverfly. Journal of Comparative Physiology A 140: 145–158

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  • Dellaert F, Beer RD (1996) A developmental model for the evolution of complete autonomous agents. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 393–401

    Google Scholar 

  • Duchon AP (1996) Maze navigation using optical flow. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 224–232

    Google Scholar 

  • Duchon AP, Warren WH (1994) Robot navigation from a Gibsonian viewpoint. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. IEEE, Piscataway, NJ, pp 2272–2277

    Google Scholar 

  • Dudel J, Menzel R, Schmidt RF (1996) Neurowissenschaft. Springer, Berlin

    Google Scholar 

  • Egelhaaf M (1985a) On the neural basis of figure-ground discrimination by relative motion in the visual system of the fly. I: Behavioral constraints imposed on the neural network and the role of the optomotor system. Biological Cybernetics 52: 123–140

    Article  Google Scholar 

  • Egelhaaf M (1985b) On the neural basis of figure-ground discrimination by relative motion in the visual system of the fly. II: Figure–detection cells, a new class of visual interneurons. Biological Cybernetics 52: 195–209

    Google Scholar 

  • Egelhaaf M (1985c) On the neural basis of figure-ground discrimination by relative motion in the visual system of the fly. III: Possible input circuitries and behavioral significance of the FD-cells. Biological Cybernetics 52: 267–280

    Article  Google Scholar 

  • Egelhaaf M, Borst A, Reichardt, W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. Journal of the Optical Society of the Americas A 6: 1070–1087

    Article  Google Scholar 

  • Egelhaaf M, Kern R, Warzecha AK (1998) Ein Blick ins Cockpit der Fliege: Wie steuern neuronale Schaltkreise visuelles Orientierungsverhalten? Neuroform 2: 204–212

    Google Scholar 

  • Eggenberger P (1996) Cell interactions as a control tool of developmental processes for evolutionary robotics. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 440–448

    Google Scholar 

  • Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of the Americas A 4: 23792394

    Google Scholar 

  • Floreano D, Mondada F (1994) Automatic creation of an autonomous agent: Genetic evolution of a neural–network driven robot. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds) From Animals to Animats 3: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 421–430

    Google Scholar 

  • Foley JD, van Dam A, Feiner SK, Hughes JF (1987) Computer graphics - principles and practice. Addison-Wesley, Reading, MA

    Google Scholar 

  • Franceschini N, Pichon JM, Blanes C (1992) From insect vision to robot vision. Philosophical Transactions of the Royal Society of London B 337: 283–294

    Article  Google Scholar 

  • Franz MO, Schölkopf B, Mallot MA, Bülthoff HH (1998) Learning view graphs for robot navigation, Autonomous Robots 5: 111–125

    Article  Google Scholar 

  • Geiger G, Poggio T (1977) On head and body movements of flying flies. Biological Cybernetics 25: 177–180

    Article  Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2: 77–92

    Article  Google Scholar 

  • Götz KG (1975) The optomotor equilibrium of the Drosophila navigation system. Journal of Comparative Physiology 99: 187–210

    Article  Google Scholar 

  • Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitfly Drosophila. Journal of Comparative Physiology 85: 235–266

    Article  Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biological Cybernetics 35: 101–112

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesely, Reading, MA

    Google Scholar 

  • Harrison RR, Koch C (1998) An analog VLSI model of the fly elementary motion detector. In: Advances in neural information processing systems, Vol. 10. Morgan Kaufmann, San Mateo, CA, pp 392–401

    Google Scholar 

  • Harvey I, Husbands P, Cliff D (1994) Seeing the light: Artificial evolution, real vision. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds) From Animals to Animats 3: 116

    Google Scholar 

  • Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 392–401

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 1 lb: 513–524

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. Biological Cybernetics 45: 143–156

    Article  Google Scholar 

  • Hausen K, Wehrhahn C (1989) Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics. Journal of Neuroscience 9: 3828–3836

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer Verlag, Berlin

    Book  Google Scholar 

  • Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. Journal of Comparative Physiology A 163: 151–165

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Huber SA (1997) Studies of the visual orientation behavior in flies using the artificial life approach. Ingeborg Huber Verlag, Schwangau

    Google Scholar 

  • Huber SA, Bülthoff HH (1997) Modelling obstacle avoidance behavior of flies using an adaptive autonomous agent. In: Proceedings of the 7th International Conference on Artificial Neural Networks, pp 709–714

    Google Scholar 

  • Huber SA, Mallot HA, Bülthoff HH (1996) Evolution of the sensorimotor control in an autonomous agent. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. The MIT Press, Cambridge, MA, pp 449–45

    Google Scholar 

  • Huber SA, Franz MO, Bülthoff HH (1999) On robots and flies: Modelling the visual orientation behavior of flies, Robotics and Autonomous Systems 29: 227–242

    Google Scholar 

  • Indiveri G, Douglas R (2000) Neuromorphic vision sensors. Science 288: 1189–1199

    Article  Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 463–466

    Article  Google Scholar 

  • Land MF (1973) Head Movement of flies during visually guided flight. Nature 243: 299300

    Google Scholar 

  • Laughlin SB (1987) Form and function in retinal processing. Trends in Neurosciences 10: 478–483

    Article  Google Scholar 

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proceedings of the Royal Society of London B 208: 385–397

    Article  Google Scholar 

  • McFarland D, Bösser T (1993) Intelligent behavior in animals and robots. The MIT Press/Bradford Books, Cambridge, MA

    Google Scholar 

  • Miller GA, Galanter E, Pribram KH (1960) Plans and the structure of behavior. Holt, New York

    Google Scholar 

  • Missler JM, Kamangar FA (1995) A neural network for pursuit tracking inspired by the fly visual system, Neural Networks 8: 463–480

    Article  Google Scholar 

  • Mura F, Franceschini N (1994) Visual control of altitude and speed in a flying agent. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds), From Animals to Animats 3: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 91–99

    Google Scholar 

  • Nalbach G (1993) The halteres of the blowfly Calliphora. Journal of Comparative Physiology A 173: 293–300

    Article  Google Scholar 

  • Neumann TR, Huber SA, Bülthoff HH (1997) Minimalistic approach to 3D obstacle avoidance behavior from simulated evolution. Proceedings of the 7th International Conference on Artificial Neural Networks. Springer, Berlin

    Google Scholar 

  • Neumann TR, Bülthoff HH (2000) Biologically motivated visual control of attitude and altitude in translatory flight. Baratoff G, Neumann H (eds) Dynamische Perzeption: Workshop der GI-Fachgruppe 1.0. 4 Bildverstehen. Akademische Verlagsgesellschaft, Berlin

    Google Scholar 

  • Nolfi S, Elman JL, Parisi D (1994) Learning and evolution in neural networks. Adaptive Behavior 3: 5–28

    Article  Google Scholar 

  • Poggio T, Reichardt W (1973) A theory of pattern induced flight orientation of the fly Musca domestica. Kybernetik 12: 185–203

    Article  Google Scholar 

  • Poggio M, Poggio T (1994) Cooperative physics of fly swarms: an emergent behavior. AI Memo No. 1512 MIT AI Lab

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart

    Google Scholar 

  • Reichardt W (1973) Musterinduzierte Flugorientierung der Fliege Musca domestica. Naturwissenschaften 60: 122

    Article  Google Scholar 

  • Reichardt W, Poggio T (1975) A theory of pattern induced flight orientation of the fly Musca domestica II. Biological Cybernetics 18: 69–80

    Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Part 1: A quantitative analysis. Quarterly Reviews of Biophysics 9: 311–375

    Google Scholar 

  • Sarpeshkar R, Kramer J, Indiveri G, Koch C (1996) Analog VLSI architectures for motion processing: from fundamental limits to system applications. In: Proceedings of IEEE 84: 969–982

    Google Scholar 

  • Sims K (1994) Evolving 3D morphology and behavior by competition. In: Brooks R, Maes P (eds) Proceedings of the 4th Conference on Aritficial Life. MIT Press, Cambride, MA, pp 28–39

    Google Scholar 

  • Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London B 216: 427–459

    Google Scholar 

  • Terzopoulos D, Rabie TF (1995) Animat vision: Active vision in artificial animals. In: Proceedings of the 5th International Conference on Computer Vision ICCV 95 IEEE Computer Society, Cambridge, MA, pp 801–808

    Chapter  Google Scholar 

  • Tinbergen N (1953) Instinktlehre - vergleichende Erforschung angeborenen Verhaltens. Parey Verlag, Berlin

    Google Scholar 

  • Wagner H (1986) Flight performance and visual control of flight of the free–flying housfly (Musca domestica L.), III. Interactions between angular movement induced by wide–and smallfield stimuli. Philosophical Transactions of the Royal Society of London B 312: 581–595

    Article  Google Scholar 

  • Weber K, Venkatesh S, Srinivasan MV (1997) Insect inspired behaviours for the autonomous control of mobile robots. In: Srinivasan MV, Venkatesh S (eds) From living eyes to seeing machines. Oxford University Press, Oxford

    Google Scholar 

  • Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biological Cybernetics 38: 179–186

    Article  Google Scholar 

  • Wiener N (1948) Cybernetics. John Wiley, New York

    Google Scholar 

  • Zanker JM (1988) On the mechanism of speed and altitude control in Drosophila melanogaster. Physiological Entomology 13: 351–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huber, S.A., Bülthoff, H.H. (2003). Visuomotor Control in Flies and Behavior — based Agents. In: Duro, R.J., Santos, J., Graña, M. (eds) Biologically Inspired Robot Behavior Engineering. Studies in Fuzziness and Soft Computing, vol 109. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1775-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1775-1_3

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2517-6

  • Online ISBN: 978-3-7908-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics