Advertisement

Visuomotor Control in Flies and Behavior — based Agents

  • Susanne A. Huber
  • Heinrich H. Bülthoff
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 109)

Abstract

The development of artificial agents or robots using inspiration from living organisms is a promising approach to the study of biological systems, complementing traditional approaches in biology and the life sciences. The simulation of simple life forms and the implementation of behavioral models in robots are especially useful ways of testing models of biological information processing.

Keywords

Mobile Robot Autonomous Agent Motion Detector Obstacle Avoidance Image Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ancona N, Poggio T (1993) Optical flow from 1D correlation: Application to a simple ‘ITC detector. Memo No. 1375, AI Laboratory, MIT, Cambridge, MAGoogle Scholar
  2. Braitenberg V (1984) Vehicles - experiments in synthetic psychology. The MIT Press, Cambridge, MAGoogle Scholar
  3. Brooks RA (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2: 14–23MathSciNetCrossRefGoogle Scholar
  4. Billthoff HH (1982) Drosophila mutants disturbed in visual orientation: II. Mutants affected in movement and position computation. Biological Cybernetics 45: 71–77CrossRefGoogle Scholar
  5. Carpenter RHS (1979) Movements in the eyes. Pion, LondonGoogle Scholar
  6. Chapuis A, Droz E (1958) Automata: A historical and technological study, transl. Reid BA, Batsford Ltd, LondonGoogle Scholar
  7. Cliff DT, Harvey I, Husbands P (1993) Explorations in evolutionary robotics. Adaptive Behavior 2: 73–110CrossRefGoogle Scholar
  8. Collett TS (1980) Angular tracking and the optomotor response–An analysis of the visual reflex interaction in a hoverfly. Journal of Comparative Physiology A 140: 145–158CrossRefGoogle Scholar
  9. Darwin C (1859) On the origin of species by natural selection or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  10. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New YorkGoogle Scholar
  11. Dellaert F, Beer RD (1996) A developmental model for the evolution of complete autonomous agents. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 393–401Google Scholar
  12. Duchon AP (1996) Maze navigation using optical flow. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 224–232Google Scholar
  13. Duchon AP, Warren WH (1994) Robot navigation from a Gibsonian viewpoint. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. IEEE, Piscataway, NJ, pp 2272–2277Google Scholar
  14. Dudel J, Menzel R, Schmidt RF (1996) Neurowissenschaft. Springer, BerlinGoogle Scholar
  15. Egelhaaf M (1985a) On the neural basis of figure-ground discrimination by relative motion in the visual system of the fly. I: Behavioral constraints imposed on the neural network and the role of the optomotor system. Biological Cybernetics 52: 123–140CrossRefGoogle Scholar
  16. Egelhaaf M (1985b) On the neural basis of figure-ground discrimination by relative motion in the visual system of the fly. II: Figure–detection cells, a new class of visual interneurons. Biological Cybernetics 52: 195–209Google Scholar
  17. Egelhaaf M (1985c) On the neural basis of figure-ground discrimination by relative motion in the visual system of the fly. III: Possible input circuitries and behavioral significance of the FD-cells. Biological Cybernetics 52: 267–280CrossRefGoogle Scholar
  18. Egelhaaf M, Borst A, Reichardt, W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. Journal of the Optical Society of the Americas A 6: 1070–1087CrossRefGoogle Scholar
  19. Egelhaaf M, Kern R, Warzecha AK (1998) Ein Blick ins Cockpit der Fliege: Wie steuern neuronale Schaltkreise visuelles Orientierungsverhalten? Neuroform 2: 204–212Google Scholar
  20. Eggenberger P (1996) Cell interactions as a control tool of developmental processes for evolutionary robotics. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 440–448Google Scholar
  21. Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of the Americas A 4: 23792394Google Scholar
  22. Floreano D, Mondada F (1994) Automatic creation of an autonomous agent: Genetic evolution of a neural–network driven robot. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds) From Animals to Animats 3: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 421–430Google Scholar
  23. Foley JD, van Dam A, Feiner SK, Hughes JF (1987) Computer graphics - principles and practice. Addison-Wesley, Reading, MAGoogle Scholar
  24. Franceschini N, Pichon JM, Blanes C (1992) From insect vision to robot vision. Philosophical Transactions of the Royal Society of London B 337: 283–294CrossRefGoogle Scholar
  25. Franz MO, Schölkopf B, Mallot MA, Bülthoff HH (1998) Learning view graphs for robot navigation, Autonomous Robots 5: 111–125CrossRefGoogle Scholar
  26. Geiger G, Poggio T (1977) On head and body movements of flying flies. Biological Cybernetics 25: 177–180CrossRefGoogle Scholar
  27. Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2: 77–92CrossRefGoogle Scholar
  28. Götz KG (1975) The optomotor equilibrium of the Drosophila navigation system. Journal of Comparative Physiology 99: 187–210CrossRefGoogle Scholar
  29. Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitfly Drosophila. Journal of Comparative Physiology 85: 235–266CrossRefGoogle Scholar
  30. Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biological Cybernetics 35: 101–112CrossRefGoogle Scholar
  31. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesely, Reading, MAGoogle Scholar
  32. Harrison RR, Koch C (1998) An analog VLSI model of the fly elementary motion detector. In: Advances in neural information processing systems, Vol. 10. Morgan Kaufmann, San Mateo, CA, pp 392–401Google Scholar
  33. Harvey I, Husbands P, Cliff D (1994) Seeing the light: Artificial evolution, real vision. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds) From Animals to Animats 3: 116Google Scholar
  34. Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 392–401Google Scholar
  35. Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 1 lb: 513–524Google Scholar
  36. Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. Biological Cybernetics 45: 143–156CrossRefGoogle Scholar
  37. Hausen K, Wehrhahn C (1989) Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics. Journal of Neuroscience 9: 3828–3836Google Scholar
  38. Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer Verlag, BerlinCrossRefGoogle Scholar
  39. Hengstenberg R (1988) Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. Journal of Comparative Physiology A 163: 151–165CrossRefGoogle Scholar
  40. Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann ArborGoogle Scholar
  41. Huber SA (1997) Studies of the visual orientation behavior in flies using the artificial life approach. Ingeborg Huber Verlag, SchwangauGoogle Scholar
  42. Huber SA, Bülthoff HH (1997) Modelling obstacle avoidance behavior of flies using an adaptive autonomous agent. In: Proceedings of the 7th International Conference on Artificial Neural Networks, pp 709–714Google Scholar
  43. Huber SA, Mallot HA, Bülthoff HH (1996) Evolution of the sensorimotor control in an autonomous agent. In: Maes P, Mataric M, Meyer JA, Pollack J, Wilson SW (eds) From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. The MIT Press, Cambridge, MA, pp 449–45Google Scholar
  44. Huber SA, Franz MO, Bülthoff HH (1999) On robots and flies: Modelling the visual orientation behavior of flies, Robotics and Autonomous Systems 29: 227–242Google Scholar
  45. Indiveri G, Douglas R (2000) Neuromorphic vision sensors. Science 288: 1189–1199CrossRefGoogle Scholar
  46. Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384: 463–466CrossRefGoogle Scholar
  47. Land MF (1973) Head Movement of flies during visually guided flight. Nature 243: 299300Google Scholar
  48. Laughlin SB (1987) Form and function in retinal processing. Trends in Neurosciences 10: 478–483CrossRefGoogle Scholar
  49. Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proceedings of the Royal Society of London B 208: 385–397CrossRefGoogle Scholar
  50. McFarland D, Bösser T (1993) Intelligent behavior in animals and robots. The MIT Press/Bradford Books, Cambridge, MAGoogle Scholar
  51. Miller GA, Galanter E, Pribram KH (1960) Plans and the structure of behavior. Holt, New YorkGoogle Scholar
  52. Missler JM, Kamangar FA (1995) A neural network for pursuit tracking inspired by the fly visual system, Neural Networks 8: 463–480CrossRefGoogle Scholar
  53. Mura F, Franceschini N (1994) Visual control of altitude and speed in a flying agent. In: Cliff D, Husbands P, Meyer JA, Wilson SW (eds), From Animals to Animats 3: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior. The MIT Press/Bradford Books, Cambridge, MA, pp 91–99Google Scholar
  54. Nalbach G (1993) The halteres of the blowfly Calliphora. Journal of Comparative Physiology A 173: 293–300CrossRefGoogle Scholar
  55. Neumann TR, Huber SA, Bülthoff HH (1997) Minimalistic approach to 3D obstacle avoidance behavior from simulated evolution. Proceedings of the 7th International Conference on Artificial Neural Networks. Springer, BerlinGoogle Scholar
  56. Neumann TR, Bülthoff HH (2000) Biologically motivated visual control of attitude and altitude in translatory flight. Baratoff G, Neumann H (eds) Dynamische Perzeption: Workshop der GI-Fachgruppe 1.0. 4 Bildverstehen. Akademische Verlagsgesellschaft, BerlinGoogle Scholar
  57. Nolfi S, Elman JL, Parisi D (1994) Learning and evolution in neural networks. Adaptive Behavior 3: 5–28CrossRefGoogle Scholar
  58. Poggio T, Reichardt W (1973) A theory of pattern induced flight orientation of the fly Musca domestica. Kybernetik 12: 185–203CrossRefGoogle Scholar
  59. Poggio M, Poggio T (1994) Cooperative physics of fly swarms: an emergent behavior. AI Memo No. 1512 MIT AI LabGoogle Scholar
  60. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, StuttgartGoogle Scholar
  61. Reichardt W (1973) Musterinduzierte Flugorientierung der Fliege Musca domestica. Naturwissenschaften 60: 122CrossRefGoogle Scholar
  62. Reichardt W, Poggio T (1975) A theory of pattern induced flight orientation of the fly Musca domestica II. Biological Cybernetics 18: 69–80Google Scholar
  63. Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Part 1: A quantitative analysis. Quarterly Reviews of Biophysics 9: 311–375Google Scholar
  64. Sarpeshkar R, Kramer J, Indiveri G, Koch C (1996) Analog VLSI architectures for motion processing: from fundamental limits to system applications. In: Proceedings of IEEE 84: 969–982Google Scholar
  65. Sims K (1994) Evolving 3D morphology and behavior by competition. In: Brooks R, Maes P (eds) Proceedings of the 4th Conference on Aritficial Life. MIT Press, Cambride, MA, pp 28–39Google Scholar
  66. Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London B 216: 427–459Google Scholar
  67. Terzopoulos D, Rabie TF (1995) Animat vision: Active vision in artificial animals. In: Proceedings of the 5th International Conference on Computer Vision ICCV 95 IEEE Computer Society, Cambridge, MA, pp 801–808CrossRefGoogle Scholar
  68. Tinbergen N (1953) Instinktlehre - vergleichende Erforschung angeborenen Verhaltens. Parey Verlag, BerlinGoogle Scholar
  69. Wagner H (1986) Flight performance and visual control of flight of the free–flying housfly (Musca domestica L.), III. Interactions between angular movement induced by wide–and smallfield stimuli. Philosophical Transactions of the Royal Society of London B 312: 581–595CrossRefGoogle Scholar
  70. Weber K, Venkatesh S, Srinivasan MV (1997) Insect inspired behaviours for the autonomous control of mobile robots. In: Srinivasan MV, Venkatesh S (eds) From living eyes to seeing machines. Oxford University Press, OxfordGoogle Scholar
  71. Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biological Cybernetics 38: 179–186CrossRefGoogle Scholar
  72. Wiener N (1948) Cybernetics. John Wiley, New YorkGoogle Scholar
  73. Zanker JM (1988) On the mechanism of speed and altitude control in Drosophila melanogaster. Physiological Entomology 13: 351–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Susanne A. Huber
    • 1
  • Heinrich H. Bülthoff
    • 2
  1. 1.Friedrich-Miescher-Laboratory of the Max-Planck-SocietyTübingenGermany
  2. 2.Max-Planck-Institute for Biological CyberneticsTübingenGermany

Personalised recommendations