Skip to main content

Behavior Coordination and its Modification on Monkey-type Mobile Robot

  • Chapter
Book cover Biologically Inspired Robot Behavior Engineering

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 109))

  • 254 Accesses

Summary

In this chapter, we present a motion generation and adaptation method for dynamical motion. First we introduce a self-scaling reinforcement learning algorithm for fuzzy controllers and we apply it to the control of a robot with a single actuator. We then extend the controller and the learning algorithm in order to control a robot with multiple degrees of freedom. In this case, a hierarchical behavior-based controller architecture is used to simplify the design process. Finally we introduce the Newton Raphson method so as to adjust a hierarchical behavior-based controller through an on-line learning process to some modifications in the environment or task. The methods proposed are applied to a brachiation robot control, both in numerical simulations and in real experiments. This brachiation robot has been developed to imitate a long-armed ape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Davis (ed.), “Handbook of Genetic Algorithms”, Van Norstrand Reinhold, pp. 61–70, (1991)

    Google Scholar 

  2. M A. Lee, H. Takagi, “Integrating Design Stages of Fuzzy Systems using Genetic Algorithms”, ICNN, pp. 612–617, (1993)

    Google Scholar 

  3. H. Nomura, et al., “A Self-tuning method of Fuzzy Reasoning by Genetic Algorithm”, Proc. of the Int’l Fuzzy Systems and Intelligent Control Conf., pp. 236–245, (1992)

    Google Scholar 

  4. S. Horikawa, T. Furuhashi, et al., “A Study on Fuzzy Modeling using Fuzzy Neural Networks”, Proc. of IFES, pp. 562–573, (1991)

    Google Scholar 

  5. C. M. Higgins, R. M. Goodman, “Learning Fuzzy Rule-Based Neural Networks for Function Approximation”, Proc. of IJCNN, vol. 1, pp. 251–256, (1992)

    Google Scholar 

  6. R. Katayama, Y. Kajitani, K. Kuwata, et al., “Self generating radial basis function as neuro-fuzzy model and its application to nonlinear prediction of chaotic time series”, IEEE Int’l Conf. on Fuzzy System, pp. 612–617, (1993)

    Google Scholar 

  7. D. Whitley, T. Strakweather, and C. Bogart, “Genetic Algorithms and Neural Networks: Optimizing Connection and Connectivity”, Parallel Computing 14, pp. 347–361, (1990)

    Article  Google Scholar 

  8. T. Fukuda, H. Ishigami, et al., “Structure Optimization of Fuzzy Gaussian Neural Network using Genetic Algorithm”, Proc. of ICAM, (1993)

    Google Scholar 

  9. T. Furuhashi, K. Nakaoka, Y Uchikawa, “An efficient finding of Fuzzy Rules Using a New Approach to Genetic Based Machine Learning”, Proc. of the FUZZIEEE/IFES, pp. 715–722, (1995)

    Google Scholar 

  10. Gullapalli, V., “A stochastic reinforcement learning algorithm for learning real-valued functions.”, Neural Networks, 3, pp. 671–692, (1990)

    Article  Google Scholar 

  11. Gullapalli, V., Franklin, J.A. and Benbrahim, H., “Acquiring Robot Skill via Reinforcement Learning”, IEEE Control Systems, 14, pp. 13–24, (1994).

    Article  Google Scholar 

  12. F. Saito, T. Fukuda, F. Arai, “Swing and Locomotion Control for a Two-Link Brachiation Robot”, IEEE Control Systems, Vol. 14, No. 1, pp. 5–12, (1994).

    Article  Google Scholar 

  13. F. Saito, T. Fukuda, F. Arai, “Swing and Locomotion Control for Two-Link Brachiation Robot”, 1993 IEEE International Conference on Robotics and Automation, Atlanta, pp. 1 I: 719–724, (1993).

    Google Scholar 

  14. T. Fukuda, H. Hosokai and Y. Kondo, “Brachiation Type of Mobile Robot”, Proc. IEEE Int. Conf. Advanced Robotics, pp. 915–920, (1991).

    Google Scholar 

  15. T. Fukuda, F. Saito and F. Arai, “A Study on the Brachiation Type of Mobile Robot(Heuristic Creation of Driving Input and Control Using CMAC)”, Proc. IEEE/RSJ Int. Workshop on Intelligent Robots and Systems, pp. 478483, (1991).

    Google Scholar 

  16. M. W. Spong, Swing Up Control of the Acrobot, Proc. 1994 IEEE International Conference on Robotics and Automation, pp. 2356–2361, (1994)

    Google Scholar 

  17. Yamafuji, K., Fukushima, D. and Maekawa, K., Study of a Mobile Robot which can Shift from one Horizontal Bar to Another Using Vibratory Excitation, JSME Int. J., Ser. III, Vol. 35, No. 3, pp. 456, (1992).

    Google Scholar 

  18. Paul, R. P., Robot Manipulators, MIT Press, pp. 157, (1981).

    Google Scholar 

  19. K. Shimojima, T. Fukuda, Y. Hasegawa, RBF-Fuzzy System with GA Based Unsupervised Learning Method, Proc. of FUZZ-IEEE/IFES’95, Vol. 1, pp. 253258, (1995).

    Google Scholar 

  20. J. S. Albus, Outline for a Theory of Intelligence, IEEE Trans. on Systems, man, and Cybernetics, Vol. 21, No. 3 1991.

    Google Scholar 

  21. J. H. Connel and S. Mahadevan, Robot Learning, Kluwer Academic Publishers, 1993

    Google Scholar 

  22. S. D. Whitehead, J. Karlsson and J. Tenenberg, Learning Multiple Goal Behavior Via Task Decomposition and Dynamic Policy Merging, chapter 3 in Robot Learning, Kluwer Academic Publishers, 1993

    Google Scholar 

  23. E. Uchibe, M Asada and K. Hosoda, Behavior Coordination for a Mobile Robot Using Modular Reinforcement Learning, Proc. IROS, pp. 1329–1336, 1996

    Google Scholar 

  24. T. Fukuda Y. Hasegawa K. Shimojima and F. Saito, “Self Scaling Reinforcement Learning for Fuzzy Logic Controller”, IEEE International Conference on Evolutionary Computation, pp. 247–252, Japan, (1996)

    Google Scholar 

  25. J. Nakanishi, T Fukuda and D.E. Koditschek, “Experimental implementation of a ”Target dynamics controller on a two-link brachiating robot“, IEEE International Conference on Robotics and Automation, pp. 787–792, (1998)

    Google Scholar 

  26. Y. Hasegawa and T. Fukuda, “Learning Method for Hierarchical Behavior Controller”, IEEE International Conference on Robotics and Automation, pp.2799–2804, (1999)

    Google Scholar 

  27. E.L. Simons, Primate Evolution:An Introduction to Man’s Place in Nature, Macmillan, (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukuda, T., Hasegawa, Y. (2003). Behavior Coordination and its Modification on Monkey-type Mobile Robot. In: Duro, R.J., Santos, J., Graña, M. (eds) Biologically Inspired Robot Behavior Engineering. Studies in Fuzziness and Soft Computing, vol 109. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1775-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1775-1_2

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2517-6

  • Online ISBN: 978-3-7908-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics