Skip to main content

Computing the Optimal Trajectory of Arm Movement: The TOPS (Task Optimization in the Presence of Signal-Dependent Noise) Model

  • Chapter
Biologically Inspired Robot Behavior Engineering

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 109))

Abstract

A new framework is proposed for motor control: the Task Optimization in the Presence of Signal-dependent noise (TOPS) model. By using this model, we need not specify the position, velocity, and acceleration of the hand at the start and end of a movement. We can easily apply this model to any task setting as well as to simple point-to-point reaching movements. Estimation of the optimal trajectories using computer simulations showed that in the case of a moving target, the trajectories estimated by this model are very different from those estimated by the minimum jerk model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelso JAS, Southard DL, Goodman D (1979) On the nature of human interlimb coordination. Science 203: 1029–1031

    Article  Google Scholar 

  2. Morasso P (1981) Spatial control of arm movements. Exp. Brain Res. 42: 223–227

    Article  Google Scholar 

  3. Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Bain 105: 331–348

    Google Scholar 

  4. Flash T, Hogan N (1985) The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5: 1688–1703

    Google Scholar 

  5. Uno Y, Kawato M, Suzuki, R (1989) Formation and control of optimal trajectory in human multijoint arm movement-minimum torque-change model. Biol. Cybern. 61: 89–101

    Google Scholar 

  6. Koike Y, Kawato M (1995) Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model. Biol. Cybern. 73: 291–300

    Google Scholar 

  7. Bizzi Y, Accornero N, Chapple W, Hogan N (1984) Posture control and trajectory formation during arm movement. J. Neurosci. 4: 2738–2744

    Google Scholar 

  8. Kawato M (1992) Optimization and learning in neural networks for formation and control of coordinated movement. In: DE Meyer and S Kornblum (eds). Attention and Performance XIV. Cambridge, MA: MIT Press, pp 225–259

    Google Scholar 

  9. Soechting JF, Flanders M (1998) Movement planning: kinematics, dynamics, both or neither? In: LR Harris, M Jenkin (eds) Vision and Action. Cambridge: Cambridge University Press, pp 332–349

    Google Scholar 

  10. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394 (20): 780–784

    Article  Google Scholar 

  11. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movements. J. Exp. Psychol. 47: 381–391

    Article  Google Scholar 

  12. Lacquaniti F, Terzuolo CA, Viviani P (1983) The law relating kinematic and figural aspects of drawing movements. Acta Psychologica 54: 115–130

    Article  Google Scholar 

  13. Viviani P, Schneider R (1991) A developmental study of the relationship between geometry and kinematics in drawing movements. J. Exp. Psychol. HPP 17: 198–218

    Google Scholar 

  14. Julier SJ, Uhlmann JK, Durrant-Whyte HF (1995) A New Approach for Filtering Nonlinear Systems. Proceedings of the 1995 American Control Conference, Seattle, Washington, pp 1628–1632

    Google Scholar 

  15. Hoff B, Arbib MA (1993) Model of Trajectory Formation and Temporal Interaction of Reach and Grasp. Journal of Motor Behavior 25 (3): 175–192

    Article  Google Scholar 

  16. Doya K, Sejnowski TJ (1998) A Computational Model of Birdsong Learning by Auditory Experience and Auditory Feedback. In: Poon, Brugge (eds) Central Auditory Processing and Neural Modeling. Plenum Press, New York, pp 77–88

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyamoto, H., Wolpert, D.M., Kawato, M. (2003). Computing the Optimal Trajectory of Arm Movement: The TOPS (Task Optimization in the Presence of Signal-Dependent Noise) Model. In: Duro, R.J., Santos, J., Graña, M. (eds) Biologically Inspired Robot Behavior Engineering. Studies in Fuzziness and Soft Computing, vol 109. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1775-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1775-1_14

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2517-6

  • Online ISBN: 978-3-7908-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics