Blackwell Sufficiency and Fuzzy Experiments

  • Andreas Wünsche
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 16)


Blackwell sufficiency is an accepted instrument for comparison of random experiments.In this paper we discuss, whether Blackwell sufficiency is a suitable instrument to characterize fuzziness and nonspecificity of experiments. The answer will be: Yes in special cases, no in general.


Probability Measure Evidence Theory Fuzzy Random Variable Suitable Instrument Probability Distribu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Blackwell (1951). Comparison of experiments. Proc. 2nd Berkeley Symp. on Math.Statist. Prob., pages 93–102. University of Colifornia Press, Berkeley.Google Scholar
  2. 2.
    D. A. Blackwell (1953). Equivalent comparisons of experiments. Ann. Math. Statist.24: 265–272.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Joel E. Cohen and J.H.B. Kemperman and Gh. Zbäganu (1998). Comparison of stochastic matrices Birkhäuser.Google Scholar
  4. 4.
    M. A. Gil (1992). Sufficiency and fuzziness in random experiments. Ann. Inst. Statist. Math.44 (3): 451–462.MathSciNetMATHGoogle Scholar
  5. 5.
    G.J. Klir and T.A. Folger (1988). Fuzzy sets, uncertainty, and information. Englewood Cliffs, NJ: Prentice Hall.MATHGoogle Scholar
  6. 6.
    R. Kruse and K.D. Meyer (1987). Statistics with Vague Data. Dordrecht: Reidel.CrossRefMATHGoogle Scholar
  7. 7.
    W. Näther and A. Wünsche, Blackwell sufficiency and fuzzy experiments. accepted for puplication in Fuzzy Sets and Systems Google Scholar
  8. 8.
    M.L. Puri and D.A. Ralescu (1986). Fuzzy random variables. J. Math. Anal. Appl.114: 409–422.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R.Körner and W.Näther (1995). On the specificity of evidences. Fuzzy sets and systems. 71: 183–196.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    G. Shafer (1976). Amathematical theory of evidence. Princeton-London: Princenton University Press.Google Scholar
  11. 11.
    Erik Torgersen (1991). Comparison of Statistical Experiments.Cambridge University Press.CrossRefMATHGoogle Scholar
  12. 12.
    L.A. Zadeh (1968). Probability measures of fuzzy events. J. Math. Anal. Appl.23: 421–427.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Andreas Wünsche
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceFreiberg University of Mining and TechnologyFreibergGermany

Personalised recommendations