Possibilistic Approach to the Bayes Statistical Decisions

  • Olgierd Hryniewicz
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 16)


In the paper we consider the problem of Bayes verification of statistical hypotheses. We consider different cases where statistical data, assumed loss functions and considered hypotheses may be described vaguely. The formulae for the calculation of expected fuzzy risks are given. The tools of the possibility theory such as Possibility of Dominance (PD) and Necessity of Strict Dominance (NSD) indices are proposed for final decision making.


Membership Function Fuzzy Number Statistical Decision Fuzzy Random Variable Fuzzy Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campos L.M., Gonzalez A. (1989) A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems, 29, 145–153MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Casals M.R. (1993) Bayesian testing of fuzzy parametric hypotheses from fuzzy information. RAIRO, Operations Research, 27, 189–199MathSciNetMATHGoogle Scholar
  3. 3.
    Casals M.R., Gil M.A., Gil P. (1986) On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems, 20, 175–190MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Casals M.R., Gil M.A., Gil P. (1986) The Fuzzy Decision Problem: an approach to the Problem of Testing Statistical Hypotheses with Fuzzy Information. European Journ. of Oper. Res., 27, 3MathSciNetGoogle Scholar
  5. 5.
    Cutell V., Montero J. (1999) An Extension of the Axioms of Utility Theory Based on Fuzzy Rationality Measures. In: Preference and Decisions under Incomplete Knowledge, J.Fodor, B.De Baets, P.Perny (Eds.), Physica-Verlag, Heidelberg, 33–50.Google Scholar
  6. 6.
    De Groot M.H (1970) Optimal Statistical Decisions. McGraw Hill, New YorkGoogle Scholar
  7. 7.
    Delgado M., Verdegay J.L., Vila M.A. (1985) Testing fuzzy hypotheses. A Bayesian approach. In: M.M.Gupta, A.Kandel, W.Bandler, J.B.Kiszka (Eds.), Approximate Reasoning in Expert Systems. Elsevier, Amsterdam, 307–316Google Scholar
  8. 8.
    Dubois D., Prade H. (1980) Fuzzy Sets and Systems. Theory and Applications. Academic Press, New YorkGoogle Scholar
  9. 9.
    Dubois D., Prade H. (1983) Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30, 184–244MathSciNetCrossRefGoogle Scholar
  10. 10.
    Frühwirth-Schatter S. (1993) Fuzzy Bayesian inference. Fuzzy Sets and Systems, 60, 41–58MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gil M.A. (1988) Probabilistic-Possibilistic approach to some Statistical Problems with Fuzzy Experimental Observations. In: J.Kacprzyk, M.Fedrizzi (Eds.). Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making. Springer-Verlag, Berlin, 286–306CrossRefGoogle Scholar
  12. 12.
    Gil M.A., Lopez-Diaz M. (1996) Fundamentals and Bayesian Analyses of Decision Problems with Fuzzy-Valued Utilities. International Journal of Approximate Reasoning, 15, 203–224MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Grzegorzewski P. (2000) Testing statistical hypotheses with vague data. Fuzzy Sets and Systems, 112, 501–510MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Grzegorzewski P., Hryniewicz O. (1999) Lifetime tests for vague data. In: L.A.Zadeh, J.Kacprzyk (Eds.), Computing with Words in Information/Intelligent Systems, 2, Applications. Physica Verlag,Heidelberg, 176–193CrossRefGoogle Scholar
  15. 15.
    Grzegorzewski P., Hryniewicz O. (2001) Soft Methods in Hypotheses Testing. In: D. Ruan, J. Kacprzyk and M. Fedrizzi (Eds.), Soft computing for risk evaluation and management. Physica Verlag, Heidelberg and New York, 55–72CrossRefGoogle Scholar
  16. 16.
    Hryniewicz O. (1988) Estimation of life-time with fuzzy prior information: application in reliability. In: J.Kacprzyk, M.Fedrizzi (Eds.), Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making. Springer-Verlag, Berlin, 307–321CrossRefGoogle Scholar
  17. 17.
    Kruse R. (1982) The strong law of large numbers for fuzzy random variables. Information Sciences. 28, 233–241MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kruse R., Meyer K.D. (1987) Statistics with Vague Data. Riedel, DodrechtCrossRefMATHGoogle Scholar
  19. 19.
    Kwakernaak H. (1978) Fuzzy random variables, part I: definitions and theorems, Information Sciences, 15, 1–15; Part II: algorithms and examples for the discrete case.Information Sciences, 17, 253–278MathSciNetCrossRefGoogle Scholar
  20. 20.
    Puri M.L., Ralescu D.A. (1986) Fuzzy random variables. J. Math. Anal. Appl., 114, 409–422MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Raiffa H., Schleifer R. (1961) Applied Statistical Decision Theory, The M. I. T. Press, CambridgeGoogle Scholar
  22. 22.
    Tanaka H., Okuda T., Asai K. (1979) Fuzzy Information and Decisions in Statistical Model. Advances in Fuzzy Sets Theory and Applications, North-Holland, 303–320Google Scholar
  23. 23.
    Taheri S.M., Behboodian J. (2001) A Bayesian approach to fuzzy hypotheses testing. Fuzzy Sets and Systems, 123, 39–48MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Viertl R. (1987) Is it necessary to develop a fuzzy Bayesian inference. In: R.Viertl (Ed.), Probability and Bayesian Statistics, Plenum Publishing Company, New York, 471–475CrossRefGoogle Scholar
  25. 25.
    Viertl R., Hule H. (1991) On Bayes’ theorem for fuzzy data. Statistical papers, 32, 115–122MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Zadeh L.A. (1978) Fuzzy sets as a basis for a Theory of Possibility. Fuzzy Sets and Systems, 1, 3–38MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zhong C., Zhou G. (1987) The equivalence of two definitions of fuzzy random variables. In: Proceedings of the 2nd IFSA Congress, Tokyo, 59–62.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Olgierd Hryniewicz
    • 1
  1. 1.Systems Research InstituteWarsawPoland

Personalised recommendations