Advertisement

On Multivalued Logic and Probability Theory

  • Beloslav Riečan
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 16)

Abstract

The idea to built probability theory on the families of fuzzy sets belongs to the first ideas of the fuzzy sets theory (see [18]). In the paper we consider the Lukasiewicz connectives ([2,7,15,16]) in the corresponding family of fuzzy sets as a base of the probability. First we present some typical methods of the theory on multivalued logics. Then we mention recent development of the theory.

Keywords

Soft Computing Borel Measurable Function Triangular Norm Multivalued Logic Boolean Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ban. A.:Ergodic transformations, Soft Computing 5 (2001), 327–222.CrossRefMATHGoogle Scholar
  2. 2.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued reasoning, Kluwer, Dordrecht 2000.CrossRefMATHGoogle Scholar
  3. 3.
    Dvurecenskij, A., Pulmannovâ, S.: New Trenda in Quantum Structures. Kluwer, Dordrecht 2000.CrossRefGoogle Scholar
  4. 4.
    Jakubik, J.: On the product MV-algebras. Czech. Math. J. (to appear).Google Scholar
  5. 5.
    Jureckovâ, M.: On the conditional expectation on probability MV-algebras with product. Soft Computing 5 (2001), 381–385.CrossRefMATHGoogle Scholar
  6. 6.
    Jureckovâ, M.: A note on the individual ergodic theorem on product MV-algebras. Internat. J. Theor. Physics 39 (2000), 753–760.Google Scholar
  7. 7.
    Klement, E.P., Mesiar, R., Pap. E.: Triangular Norms, Kluwer, Dordrecht 2000.CrossRefGoogle Scholar
  8. 8.
    Mali “, P., Riecan, B.: On the entropy of dynamical systems. In: Proc. Conf. Ergodic theory and Related Topics II (H. Michel ed.), Teubner, Leipzig 1986, 135–138.Google Scholar
  9. 9.
    Mesiar, R., Riecan, B.: On the joint observable in some quantum structures. Tatra Mt. Math. Publ. 9 (1993), 183–190.MathSciNetGoogle Scholar
  10. 10.
    Petrovicovâ, J.: On the entropy of dynamical systems. Fuzzy Sets and systems 121 (2001), 347–351.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Montagna, F.: An algebraic approach to propositional fuzzy logic. J. of Logic, Language and Information 9 (2000), 91–124.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Riecan, B.: On the product MV-algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149.MathSciNetMATHGoogle Scholar
  13. 13.
    Riecan, B.: Almost everywhere convergence in probability MV-algebras with product. Soft Computing 5 (2001), 396–399.CrossRefMATHGoogle Scholar
  14. 14.
    Riecan, B.: Free products of probability MV-algebras. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 173–186.MathSciNetMATHGoogle Scholar
  15. 15.
    Riecan, B., Mundici, D.: Probability on MV-algebras. In: Handbook on Measure theory ( E. Pap ed.), North Holland, Amsterdam 2002.Google Scholar
  16. 16.
    Riecan, B., Neubrunn, T.: Integral, Measure, and Ordering, Kluwer, Dordrecht 1997.CrossRefMATHGoogle Scholar
  17. 17.
    Vrâbelovâ, M.: On the conditional probability in product MV-algebras. Soft Computing 4 (2000), 58–61.CrossRefMATHGoogle Scholar
  18. 18.
    Zadeh, L.: Probability measures for fuzzy events. J.Math. Anal. App. 23 (1968), 421–427.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Beloslav Riečan
    • 1
    • 2
  1. 1.Department of Mathematics M. Bel UniversityBanská BystricaSlovakia
  2. 2.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations