Quantitative Possibility Theory and its Probabilistic Connections

  • Didier Dubois
  • Henri Prade
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 16)


Possibility theory is a representation framework general enough to model various kinds of information items: numbers, intervals, consonant random sets, special kind of probability families, as well as linguistic information, and uncertain formulae in logical settings. This paper focuses on quantitative possibility measures cast in the setting of imprecise probabilities. Recent results on possibility/probability transformations are recalled. The probabilistic interpretation of possibility measures sheds some light on defuzzification methods and suggests a common framework for fuzzy interval analysis and calculations with random parameters.


Fuzzy Number Triangular Fuzzy Number Belief Function Possibility Distribution Possibility Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett V. (1973). Comparative Statistical Inference, J. Wiley, New York.MATHGoogle Scholar
  2. 2.
    Benferhat S., Dubois D. and Prade H. (1997a). Nonmonotonic reasoning, conditional objects and possibility theory, Artificial Intelligence, 92, 259–276.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chanas S. and Nowakowski M. (1988). Single value simulation of fuzzy variable, Fuzzy Sets and Systems, 25, 43–57.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    De Baets B., Tsiporkova E. and Mesiar R. (1999). Conditioning in possibility with strict order norms, Fuzzy Sets and Systems, 106, 221–229.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Cooman G. (1997). Possibility theory–Part I: Measure-and integral-theoretics groundwork; Part II: Conditional possibility; Part III: Possibilistic independence, Int. J. of General Systems, 25 (4), 291–371.CrossRefMATHGoogle Scholar
  6. 6.
    De Cooman G. (2001) Integration and conditioning in numerical possibility theory. Annals of Math. and AI, 32, 87–123.Google Scholar
  7. 7.
    De Cooman G. and Aeyels D. (1996). On the coherence of supremum preserving upper previsions, Proc. of the 6th Inter. Conf. Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’96), Granada, 1405–1410.Google Scholar
  8. 8.
    De Cooman G., Aeyels D. (1999). Supremum-preserving upper probabilities. Information Sciences, 118, 173–212.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Delgado M. and Moral S. (1987). On the concept of possibility-probability consistency, Fuzzy Sets and Systems, 21, 311–318.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dempster A. P. (1967). Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325–339.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Denneberg D. (1994). Nonadditive Measure and Integral, Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  12. 12.
    Dubois D. (1986). Belief structures, possibility theory and decomposable confidence measures on finite sets, Computers and Artificial Intelligence (Bratislava), 5, 403–416.MATHGoogle Scholar
  13. 13.
    Dubois D., Fargier H; and Prade H. (1996b). Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty, Applied Intelligence, 6, 287–309.CrossRefGoogle Scholar
  14. 14.
    Dubois D., Kerre E., Mesiar R., Prade H. Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets, Dubois,D. Prade,H., Eds: Kluwer, Boston, Mass, The Handbooks of Fuzzy Sets Series, 483–581, 2000.Google Scholar
  15. 15.
    Dubois D., Moral S. and Prade H. (1997). A semantics for possibility theory based on likelihoods, J. of Mathematical Analysis and Applications, 205, 359–380.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dubois D. and Prade H. (1980). Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York.MATHGoogle Scholar
  17. 17.
    Dubois and Prade H. (1982) On several representations of an uncertain body of evidence,“ in Fuzzy Information and Decision Processes, M.M. Gupta, and E. Sanchez, Eds., North-Holland, Amsterdam, 1982, pp. 167–181.Google Scholar
  18. 18.
    Dubois D. and Prade H. (1983) Unfair coins and necessity measures: towards a possibilistic interpretation of histograms. Fuzzy Sets and Systems, 10, 15–20.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dubois D. and Prade H. (1985). Evidence measures based on fuzzy information, Automatica, 21, 547–562.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Dubois D. and Prade H. (1986). Fuzzy sets and statistical data, Europ. J. Operations Research, 25, 345–356.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Dubois D. and Prade H. (1987). The mean value of a fuzzy number, Fuzzy Sets and Systems, 24, 279–300.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Dubois D. and Prade H. (1988). Possibility Theory, Plenum Press, New York.CrossRefGoogle Scholar
  23. 23.
    Dubois D. and Prade H. (1990) Consonant approximations of belief functions. Int. J. Approximate Reasoning, 4, 419–449.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Dubois D. and Prade H. (1991). Random sets and fuzzy interval analysis, Fuzzy Sets and Systems, 42, 87–101.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Dubois D. and Prade H. (1992). When upper probabilities are possibility measures, Fuzzy Sets and Systems, 49, 65–74.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Dubois D. and Prade H. (1997) Bayesian conditioning in possibility theory, Fuzzy Sets and Systems, 92, 223–240.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dubois D. and Prade H. (1998). Possibility theory: Qualitative and quantitative aspects, Handbook of Defeasible Reasoning and Uncertainty Management Systems–Vol. 1 ( Gabbay D.M. and Smets P., eds.), Kluwer Academic Publ., Dordrecht, 169–226.Google Scholar
  28. 28.
    Dubois D., Nguyen H. T., Prade H. (2000) Possibility theory, probability and fuzzy sets: misunderstandings, bridges and gaps. In: Fundamentals of Fuzzy Sets, (Dubois, D. Prade,H., Eds.), Kluwer, Boston, Mass., The Handbooks of Fuzzy Sets Series, 343–438.Google Scholar
  29. 29.
    Dubois D., Foulloy L., Mauris G., Prade H. (2002), Possibility/probability transformations, triangular fuzzy sets, and probabilistic inequalities. Proc. IPMU conference, Annecy, France.Google Scholar
  30. 30.
    Dubois D., Prade H. and Sandri S. (1993). On possibility/probability transformations. In: Fuzzy Logic. State of the Art, ( R. Lowen, M. Roubens, eds.), Kluwer Acad. Publ., Dordrecht, 103–112.CrossRefGoogle Scholar
  31. 31.
    Dubois D., Prade H. and Smets P. (1996). Representing partial ignorance, IEEE Trans. on Systems, Man and Cybernetics, 26, 361–377.CrossRefGoogle Scholar
  32. 32.
    Dubois D., Prade H. and Smets P. (2001). New semantics for quantitative possibility theory. Proc. ESQARU 2001, Toulouse, LNAI 2143, Springer-Verlag, p. 410–421, 19–21.Google Scholar
  33. 33.
    Edwards W. F. (1972). Likelihood, Cambridge University Press, Cambridge, U.K.MATHGoogle Scholar
  34. 34.
    Fortemps P. and Roubens M. (1996). Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, 82, 319–330.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Gebhardt J. and Kruse R. (1993). The context model–an intergating view of vagueness and uncertainty. Int. J. Approximate Reasoning, 9, 283–314.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gebhardt J. and Kruse R. (1994a) A new approach to semantic aspects of possibilistic reasoning. Symbolic and Quantitative Approaches to Reasoning and Uncertainty (M. Clarke et al. Eds.), Lecture Notes in Computer Sciences Vol. 747, Springer Verlag, 151–160.Google Scholar
  37. 37.
    Gebhardt J. and Kruse R. (1994b) On an information compression view of possibility theory. Proc 3rd IEEE Int. Conference on Fuzzy Systems. Orlando,Fl., 1285–1288.Google Scholar
  38. 38.
    Geer J.F. and Klir G.J. (1992). A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of uncertainty, Int. J. of General Systems, 20, 143–176.CrossRefMATHGoogle Scholar
  39. 39.
    Gil M. A. (1992). A note on the connection between fuzzy numbers and random intervals, Statistics and Probability Lett., 13, 311–319.CrossRefMATHGoogle Scholar
  40. 40.
    Gonzalez A. (1990). A study of the ranking function approach through mean values, Fuzzy Sets and Systems, 35, 29–43.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Grabisch M., Murofushi T. and Sugeno M. (1992). Fuzzy measure of fuzzy events defined by fuzzy integrals, Fuzzy Sets and Systems, 50, 293–313.MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Hacking I. (1975). All kinds of possibility, Philosophical Review, 84, 321–347.CrossRefGoogle Scholar
  43. 43.
    Heilpern S. (1992). The expected value of a fuzzy number, Fuzzy Sets and Systems, 47, 81–87.MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Heilpern S. (1997). Representation and application of fuzzy numbers, Fuzzy Sets and Systems, 91, 259–268.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Higashi and Klir G. (1982). Measures of uncertainty and information based on possibility distributions, Int. J. General Systems, 8, 43–58.CrossRefGoogle Scholar
  46. 46.
    Hisdal E. (1978). Conditional possibilities independence and noninteraction, Fuzzy Sets and Systems, 1, 283–297.CrossRefMATHGoogle Scholar
  47. 47.
    Joslyn C. (1997). Measurement of possibilistic histograms from interval data, Int. J. of General Systems, 26 (1–2), 9–33.MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Kaufmann A (1980). La simulation des ensembles flous, CNRS Round Table on Fuzzy Sets, Lyon, France (unpublished proceedings).Google Scholar
  49. 49.
    Klir G.J. (1990). A principle of uncertainty and information invariance, Int. J. of General Systems, 17, 249–275.CrossRefMATHGoogle Scholar
  50. 50.
    Klir G.J. and Folger T. (1988). Fuzzy Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  51. 51.
    Klir G.J. and Parviz B. (1992). Probability-possibility transformations: A comparison, Int. J. of General Systems, 21, 291–310.CrossRefMATHGoogle Scholar
  52. 52.
    Lapointe S. Bobee B. (2000). Revision of possibility distributions: A Bayesian inference pattern, Fuzzy Sets and Systems, 116, 119–140MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Mauris G., Lasserre V., Foulloy L. (2001). A fuzzy appproach for the expression of uncertainty in measurement. Int. J. Measurement, 29, 165–177.Google Scholar
  54. 54.
    Lewis D. L. (1979). Counterfactuals and comparative possibility, Ifs (Harper W. L., Stalnaker R. and Pearce G., eds.), D. Reidel, Dordrecht, 57–86.Google Scholar
  55. 55.
    Raufaste E. and Da Silva Neves R. (1998). Empirical evaluation of possibility theory in human radiological diagnosis, Proc. of the 13th Europ. Conf. on Artificial Intelligence (ECAI’98) ( Prade H., ed. ), John Wiley amp; Sons, 124–128.Google Scholar
  56. 56.
    Saade J. J. and Schwarzlander H. (1992). Ordering fuzzy sets over the real line: An approach based on decision making under uncertainty, Fuzzy Sets and Systems, 50, 237–246.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Shackle G. L.S. (1961). Decision, Order and Time in Human Affairs, ( 2nd edition ), Cambridge University Press, UK.Google Scholar
  58. 58.
    Shafer G. (1976). A Mathematical Theory of Evidence, Princeton University Press, Princeton.Google Scholar
  59. 59.
    Shafer G. (1987). Belief functions and possibility measures, Analysis of Fuzzy Information–Vol. I: Mathematics and Logic (Bezdek J.C., Ed.), CRC Press, Boca Raton, FL, 51–84.Google Scholar
  60. 60.
    Shapley S. (1971). Cores of convex games, Int. J. of Game Theory, 1, 12–26.MathSciNetGoogle Scholar
  61. 61.
    Shilkret N. (1971). Maxitive measure and integration, Indag. Math., 33, 109116.Google Scholar
  62. 62.
    Smets P. (1990). Constructing the pignistic probability function in a context of uncertainty, Uncertainty in Artificial Intelligence 5 (Henrion M. et al., Eds.), North-Holland, Amsterdam, 29–39.Google Scholar
  63. 63.
    Smets P. and Kennes R. (1994). The transferable belief model, Artificial Intelligence, 66. 191–234.MathSciNetCrossRefGoogle Scholar
  64. 64.
    Spohn W. (1988). Ordinal conditional functions: A dynamic theory of epistemic states, Causation in Decision, Belief Change and Statistics (Harper W. and Skyrms B., Eds. ), 105–134.CrossRefGoogle Scholar
  65. 65.
    Van Leekwijk W. and Kerre E. (1999). Defuzzification: criteria and classification. Fuzzy Sets and Systems., 118, 159–178.CrossRefGoogle Scholar
  66. 66.
    Walley P. (1991). Statistical Reasoning with Imprecise Probabilities, Chapman and Hall.Google Scholar
  67. 67.
    Walley P. (1996). Measures of uncertainty in expert systems, Artificial Intelligence, 83, 1–58.MathSciNetCrossRefGoogle Scholar
  68. 68.
    Walley P. and de Cooman G. (1999) A behavioural model for linguistic uncertainty, Information Sciences, 134, 1–37.CrossRefGoogle Scholar
  69. 69.
    Wang P.Z. (1983). From the fuzzy statistics to the falling random subsets, Advances in Fuzzy Sets, Possibility Theory and Applications (Wang P.P., Eds.), Plenum Press, New York, 81–96.CrossRefGoogle Scholar
  70. 70.
    Yager R.R. (1980). A foundation for a theory of possibility, J. Cybernetics, 10, 177–204.MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Yager R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24, 143–161.MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Yager R.R. (1992). On the specificity of a possibility distribution, Fuzzy Sets and Systems, 50, 279–292.MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Yager R. R. and Filev D. (1993). On the issue of defuzzification and selection based on a fuzzy set, Fuzzy Sets and Systems, 55, 255–271.MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Zadeh L.A. (1965). Fuzzy sets, Information and Control, 8, 338–353.MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Zadeh L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, Part I: 8, 199–249; Part II: 8, 301–357; Part III: 9, 43–80.MathSciNetMATHGoogle Scholar
  76. 76.
    Zadeh L. A. (1978). Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1, 3–28.MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Zadeh L.A. (1979a). A theory of approximate reasoning, Machine Intelligence, Vol. 9 ( Hayes J. E., Michie D. and Mikulich L. I., eds.), John Wiley amp; Sons, New York, 149–194.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.IRIT-CNRSUniversite Paul SabatierToulouseFrance

Personalised recommendations