A Fuzzy Generalisation of Information Relations

  • Anna Maria Radzikowska
  • Etienne E. Kerre
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 114)


In this paper we consider a fuzzy generalisation of some information relations. Basic properties of these relations are provided. We give characterisations of these relations formalised by means of fuzzy information operators. For particular classes of fuzzy information relations the corresponding classes of fuzzy information logics are defined and briefly discussed.


Fuzzy Relation Zero Divisor Kripke Model Fuzzy Information Information Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balbiani, P., Orlowska, E.: A hierarchy of modal logics with relative accessibility relations. Journal of Applied Non-Classical Logics 9, no 2–3 (1999) 303–348MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    De Baets, B., Mesiar, R.: Pseudo-metrics and T—equivalences. Journal of Fuzzy Mathematics 5 (2) (1997) 471–481MathSciNetMATHGoogle Scholar
  3. 3.
    Demri, S., Orlowska, E., Vakarelov, D.: Indiscernibility and complementarity relations in information systems. J. Gerbrandy, M. Marx, M. de Rijke and Y. Venema (eds) JFAK, Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press (1999)Google Scholar
  4. 4.
    Demri, S. and Orlowska, E. Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science, Springer (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Putting fuzzy sets and rough sets together. Intelligent Decision Support, Slowinski, R. ( ed. ), Kluwer Academic (1992) 203–232Google Scholar
  6. 6.
    Düntsch, I., Orlowska, E.: Beyond modalities: Sufficiency and Mixed Algebras. Relational Methods for Computer Science Applications, Orlowska, E. and Szalas, A. (eds), Physica—Verlag, Heidelberg (2000) 263–283Google Scholar
  7. 7.
    Düntsch, I. and Orlowska, E.: Logics of complementarity in information systems. Mathematical Logic Quarterly 46 (2000) 267–288MATHCrossRefGoogle Scholar
  8. 8.
    Godo, L., Rodriquez, R.O.: Fuzzy Modal Logic for Similarity Reasoning Kluwer Academic Publishers 6 (1999) 33–48Google Scholar
  9. 9.
    Hâjek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Humberstone, I.: Inaccessible words. Notre Dame Journal of Formal Logic 24 (1983) 346–352MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kerre, E.E. (ed.): Introduction to the Basic Principles of Fuzzy Set Theory and Some of Its Applications, Communication Cognition, Gent (1993)Google Scholar
  12. 12.
    Klir, G.J., Yuan, B.: Fuzzy Logic: Theory and Applications. Prentice—Hall, Englewood Cliffs, NJ (1995)MATHGoogle Scholar
  13. 13.
    Konikowska, B.: A logic for reasoning about relative similarity. Studia Logica 58 (1997) 185–226MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Orlowska, E.: Kripke models with relative accessibility and their applications to inference from incomplete information. Mathematical Problems in Computation Theory, Mirkowska, G. Rasiowa, H. (eds.), Banach Center Publications 21 (1988) 329–339Google Scholar
  15. 15.
    Orlowska, E.: Many—valudness and uncertainty. Proceedings of the 27th International Symposium on Multiple-Valued Logic ISMVL-97, Antigonish, Canada (1997) 153–160. Also in Multiple Valued Logics 4 (1999) 207–227MathSciNetMATHGoogle Scholar
  16. 16.
    Orlowska, E. (ed.): Incomplete Information — Rough Set Analysis. Studies in Fuzziness and Soft Computing, Springer—Verlag (1998)CrossRefGoogle Scholar
  17. 17.
    Orlowska, E.: Studying incompleteness of information: a class of information logics. in Kijania—Placek, K. and Wolernski, J. (eds.), The Lvov—Warsaw School and Contempotary Philosophy, Kluwer Academic Press (1998) 283–300Google Scholar
  18. 18.
    Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets revisited. Proceedings of European Congress of Intelligent Techniques and Soft Computing EUFIT-99, Aachen, Germany. Published on CD-ROM (1999)Google Scholar
  19. 19.
    Radzikowska, A.M., Kerre, E.E.: On some classes of fuzzy information relations. Proceedings of the 31st International Symposium of Multiple Valued Logics ISMVL-2001, Warsaw, Poland (2001) 75–80Google Scholar
  20. 20.
    Radzikowska, A.M., Kerre, E.E.: Towards studying of fuzzy information relations. Proceedings of International Conference in Fuzzy Logic and Technology EUSFLAT-2001, Leicester, UK (2001) 365–368Google Scholar
  21. 21.
    Radzikowska, A.M., Kerre, E.E.: A comparative study on fuzzy rough sets. Fuzzy Sets and Systems 126 (2) (2002) 137–155MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Radzikowska, A.M., Kerre, E.E.: A general calculus of fuzzy rough sets. Submitted (2002)Google Scholar
  23. 23.
    Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices. Submitted (2002)Google Scholar
  24. 24.
    Radzikowska, A.M., Kerre, E.E.: Characterisations of main classes of fuzzy relations using information operators. Submitted (2002)Google Scholar
  25. 25.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam (1983)Google Scholar
  26. 26.
    Thiele, H.: Fuzzy Rough Sets versus Rough Fuzzy Sets — An Interpretation and a Comparative Study using Concepts of Modal Logics. Proceedings of European Congress of Intelligent Techniques and Soft Computing EUFIT-97, Aachen, Germany (1997) 159–167Google Scholar
  27. 27.
    Turunen, E.: Mathematics Behind Fuzzy Logics. Physica—Verlag (1999)Google Scholar
  28. 28.
    Vakarelov, D.: A modal logic for similarity relations in Pawlak knowledge representation systems. Fundamenta Informaticae 15 (1991) 61–79MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Anna Maria Radzikowska
    • 1
  • Etienne E. Kerre
    • 2
  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland
  2. 2.Department of Applied Mathematics and Computer ScienceGhent UniversityGentBelgium

Personalised recommendations