A Development of Set Theory in Fuzzy Logic

  • Petr Hájek
  • Zuzana Haniková
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 114)


This paper presents an axiomatic set theory FST (‘Fuzzy Set Theory’), as a first-order theory within the framework of fuzzy logic in the style of [4]. In the classical ZFC, we use a construction similar to that of a Boolean-valued universe—over an algebra of truth values of the logic we use—to show the nontriviality of FST. We give the axioms of FST. Finally we show that FST interprets ZF.


Fuzzy Logic Free Variable Residuated Lattice Schematic Extension Logical Axiom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic Fuzzy Logic is the logic of continuous t-norms and their residua, Soft Computing 4 (2000) 106–112CrossRefGoogle Scholar
  2. 2.
    Grayson, R.J.: Heyting-valued models for intuitionistic set theory, Application of Sheaves: Lect. Notes Math. 753 (1979) 402–414MathSciNetCrossRefGoogle Scholar
  3. 3.
    Grishin, V.N.: O vese aksiomy svertyvania v teorii, osnovannoj na logike bez sokrashchenij, Matematicheskije zametki 66, no. 5 (1999) 643–652MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hâjek, P.: Metamathematics of Fuzzy Logic, Kluwer Academic Publishers (1998)Google Scholar
  5. 5.
    Hâjek, P.: Function symbols in fuzzy predicate logic, Proc. East-West Fuzzy Colloq. Zittau (2000)Google Scholar
  6. 6.
    Hâjek, P., Hanikovâ, Z.: A set theory within fuzzy logic, Proc. 31st IEEE ISMVL Warsaw (2001) 319–324Google Scholar
  7. 7.
    Powell, W. C.: Extending Gödel’s negative interpretation to ZF, J. Symb. Logic 40, no. 2 (1975) 221–229MATHCrossRefGoogle Scholar
  8. 8.
    Shirahata, M.: Phase-valued models of linear set theory, preprint (1999)Google Scholar
  9. 9.
    Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, J. Symb. Logic 49 (1984) 851–866MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Takeuti, G., Titani, S.: Fuzzy logic and fuzzy set theory, Arch. Math. Logic 32 (1992) 1–32MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Titani, S.: A lattice-valued set theory, Arch. Math. Logic 38 (1999) 395–421MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Petr Hájek
    • 1
  • Zuzana Haniková
    • 1
  1. 1.Institute of Computer SciencePraha 8Czech Republic

Personalised recommendations