Using Hierarchical Fuzzy Behaviors in the RoboCup Domain

  • Alessandro Saffiotti
  • Zbigniew Wasik
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 116)


An important reason for the popularity of the behavior-based paradigm in autonomous robotics is the possibility to design complex robot behaviors in an incremental way. We propose a fuzzy hierarchical behavior-based architecture, in which rules and meta-rules are used in a uniform way at all levels of the control hierarchy. This architecture has been successfully used in a number of robots performing autonomous navigation tasks. In this paper, we show the use of hierarchical fuzzy behaviors to implement a set of navigation and ball control behaviors for a Sony four-legged robot operating in the RoboCup domain. We also show that the logical structure of the rules and the hierarchical decomposition simplify the design of very complex behaviors, like the “GoalKeeper” behavior.


Fuzzy Logic Fuzzy Rule Finite State Machine Desirability Function Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, R.A. (1986) A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2, 1, 14–23CrossRefGoogle Scholar
  2. 2.
    Arkin, R.C. (1998) Behavior-Based Robotics. MIT Press, Cambridge, MAGoogle Scholar
  3. 3.
    Saffiotti, A., Konolige, K., and Ruspini, E.H. (1995) A multivalued-logic approach to integrating planning and control. Artificial Intelligence, 76, 1–2, 481–526. Online at CrossRefGoogle Scholar
  4. 4.
    Driankov, D. and Saffiotti, A. (2001) Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Physica-Springer Verlag, Berlin, DE. Online at CrossRefGoogle Scholar
  5. 5.
    Saffiotti, A. Team Sweden web site.
  6. 6.
    Sony Corporation. Entertainement robot AIBO.
  7. 7.
    Saffiotti, A. The Thinking Cap.
  8. 8.
    Saffiotti, A. and LeBlanc, K. (2000) Active perceptual anchoring of robot behavior in a dynamic environment. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), San Francisco, CA, 3796–3802. Online at Google Scholar
  9. 9.
    Buschka, P., Saffiotti, A., and Wasik, Z. (2000) Fuzzy landmark-based localization for a legged robot. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Takamatsu, Japan, 1205–1210. Online at asaffio/ Google Scholar
  10. 10.
    Johansson, S. and Saffiotti, A. (2001) Using the Electric Field Approach in the RoboCup domain. In: Proc. of the Int. RoboCup Symposium, Seattle, WA. Online at Google Scholar
  11. 11.
    Ruspini, E.H. (1991) Truth as utility: A conceptual synthesis. In: Proc. of the 7th Conf. on Uncertainty in AI, Los Angeles, CA, 316–322Google Scholar
  12. 12.
    Rescher, N. (1967) Semantic foundations for the logic of preference. In: The Logic of Decision and Action (ed. Rescher, N.) . Univ. of Pittsburgh Press, Pittsburgh, PAGoogle Scholar
  13. 13.
    Saffiotti, A., Ruspini, E.H., and Konolige, K. (1993) Blending reactivity and goal-directedness in a fuzzy controller. In: Proc. of the 2nd IEEE Int. Conf. on Fuzzy Systems, San Francisco, CA, 134–139. Online at Google Scholar
  14. 14.
    Saffiotti, A. (1997) The uses of fuzzy logic in autonomous robot navigation. Soft Computing, 1, 4, 180–197. Online at http://www.aass.oru.serasaffio/ Google Scholar
  15. 15.
    Payton, D.W. (1986) An architecture for reflexive autonomous vehicle control. In: Procs. of the IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 1838–1845Google Scholar
  16. 16.
    Khatib, O. (1986) Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5, 1, 90–98MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bloch, I. and Hunter, A., editors (2001) Special issue on data and knowledge fusion. International Journal of Intelligent Systems, 16, 10Google Scholar
  18. 18.
    Yen J. and Pfluger, N. (1995) A fuzzy logic based extension to Payton and Rosenblatt’s command fusion method for mobile robot navigation. IEEE Trans. on Systems, Man, and Cybernetics, 25, 6, 971–978CrossRefGoogle Scholar
  19. 19.
    Henzinger, T.A. (1996) The theory of hybrid automata. In: Proc. of the 11th Symp. on Logic in Computer Science (LICS), New Brunswick, New Jersey, 278–292Google Scholar
  20. 20.
    Ballard, D.H. (1991) Animate vision. Artificial Intelligence, 48, 57–87CrossRefGoogle Scholar
  21. 21.
    Berenji, H., Chen, Y-Y., Lee, C-C., Jang, J-S., and Murugesan, S. (1990) A hierarchical approach to designing approximate reasoning-based controllers for dynamic physical systems. In: Proc. of the 6th Conf. on Uncertainty in AI, Cambridge, MA, 362–369Google Scholar
  22. 22.
    Raju, G. V. S., Zhou, J., and Kisner, R.A. (1991) Hierarchical fuzzy control. Int. J. Control, 54, 5, 1201–1216MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Berenji, H.R. (1994) The unique strength of fuzzy logic control. IEEE Expert, August, page 9. Response to Elkan’s “The paradoxical success of fuzzy logic,” same issueGoogle Scholar
  24. 24.
    Wasik, Z., and Saffiotti, A. (2002) A fuzzy behavior-based control system for manipulation. Submitted, manuscript available from the authorsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alessandro Saffiotti
    • 1
  • Zbigniew Wasik
    • 1
  1. 1.Center for Applied Autonomous Sensor Systems Dept. of TechnologyÖrebro UniversityÖrebroSweden

Personalised recommendations