Advertisement

Hierarchical Planning in a Mobile Robot for Map Learning and Navigation

  • Cristina Urdiales
  • Antonio Bandera
  • Eduardo Pérez
  • Alberto Poncela
  • Francisco Sandoval
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 116)

Abstract

This chapter focuses on autonomous navigation for mobile robots. We propose a hybrid layered architecture, which is used to navigate in totally or partially explored environments using sonar sensors. Our architecture relies on a hierarchical representation of the environment, which has both a metric and a topological level, which is based on the metric level. High level planning layers work at the topological level deliberatively, while low level navigation layers operate at the metric level reactively. The main advantage of the proposed scheme is that it can operate in both known and unknown environments rapidly and efficiently.

Keywords

Mobile Robot Path Planning Topological Graph Unexplored Area Occupancy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dudek, G., and Jenkins, M. (2000): Computational principles of mobile robotics. Cambridge University Press, Cambridge, USA.MATHGoogle Scholar
  2. 2.
    Leonard, J.J. and Durrant-Whyte, H.F. (1992): Directed Sonar Sensing for Mobile Robot Navigation. Kluwer Academic Publishers, Massachussetts.MATHCrossRefGoogle Scholar
  3. 3.
    Maybeck, P. S. (1990): The Kalman filter: An introduction to concepts. In I. J. Cox, and G. T. Wilfang (Eds.), Autonomous Robot Vehicles, New York: Springer, pp. 194–204.Google Scholar
  4. 4.
    Arkin, R.C. (1998): Behaviour based robotics, MIT Press, Cambridge.Google Scholar
  5. 5.
    Moravec, H.P. (1983): The Stanford Cart and the CMU Rover. Proc. of the IEEE, Vol. 71, No. 7, pp. 872–884.CrossRefGoogle Scholar
  6. 6.
    Albus, J. (1991). Outline for a theory of intelligence. IEEE Transactions on Systems, man and Cybernetics, Vol. 3, No. 21, pp. 473–509.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hu, H. and Brady, M. (1996): A parallel processing architecture for sensor based control of intelligent mobile robots. Robotics and autonomous systems, Vol. 17, 235–257.CrossRefGoogle Scholar
  8. 8.
    Tsotsos, J.K. (1997): Intelligent control for perceptually attentive agents: The S* proposal. Robotics and autonomous systems, Vol. 21, pp. 2–21.CrossRefGoogle Scholar
  9. 9.
    Brooks, R.A. (1991): Intelligence Without Reason. Proc. IJCAI-91’, pp. 569–595, Sydney, Australia.Google Scholar
  10. 10.
    Brooks, R.A. (1986): A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation, Vol. 2, No. 1, pp. 1423.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lyons, D. (1992): Planning, Reactive. In Shapiro, S. (Ed.): Encyclopedia of Artificial Intelligence, 2nd Edition. John Wiley & Sons, New York, pp. 1171–1182.Google Scholar
  12. 12.
    Coste-Manière, E. and Simmons, R. (2000): Architecture, the backbone of robotic systems. Proc. of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, pp. 67–72.Google Scholar
  13. 13.
    Chocon, H. (1992): Object-Oriented Design and Distributed Implementation of a Mobile Robot Control System. Proc. of Workshop on Architecture for Intelligent Control Systems, R. Chatila and S.Y. Harmon, Eds. Nice, France.Google Scholar
  14. 14.
    Wise, J.D. and Ciscon, L. (1992): TelRIP Distributed Application Environment Operating Manual, Version 1.6. Technical Report 9103, Universities Space Automation/Robotics Consortium.Google Scholar
  15. 15.
    Simmons, R.G. (1994): Structured Control for Autonomus Robots. IEEE Transactions on Robotics and Automation, Vol. 10, No. 1, pp.34–43.CrossRefGoogle Scholar
  16. 16.
    Dulimarta, H.S. (1996): A Client/Server Control Architecture for Robot Navigation. Pattern Recognition, Vol. 29, No. 8, pp. 1259–1284.CrossRefGoogle Scholar
  17. 17.
    Franz, M.O. and Mallot, H.A. (2000): Biomimetic robot navigation. Robotics and autonomous systems, Vol. 30, pp. 133–153.CrossRefGoogle Scholar
  18. 18.
    Moravec, H. P. (1988): Sensor fusion in certainty grids for mobile robots. AI Magazine, Vol. 9, No. 2, pp. 61–74.Google Scholar
  19. 19.
    Matarić, M.J. (1994): Interaction and intelligent behavior. Technical Report AI-TR-1495, MIT, AI-Lab, Cambridge-USA.Google Scholar
  20. 20.
    Thrun, S., Bucken, A., Burgard, W., Fox, D., Frohlinghaus, T., Hennig, D., Hofmann, T., Krell, M., and Schimdt, T. (1998): Map learning and high-speed navigation in RHINO. MIT/AAAI Press, Cambridge.Google Scholar
  21. 21.
    Borenstein, J., Everett, H.R. and Feng, L. (1996): Navigating mobile robots: systems and techniques. Wellesley, Massachusetts: A.K. Peters, Ltd.MATHGoogle Scholar
  22. 22.
    Kuipers, B.J. and Byun, Y.T. (1991): A robot exploration and mapping strategy based on a semantic hierarchy of spatial representation. Journal of Robotics and Autonomous Systems, Vol. 8, pp. 47–63.CrossRefGoogle Scholar
  23. 23.
    Arleo, A., Millán, J.R. and Floreano, D. (1999): Efficient learning of variableresolution cognitive maps for autonomous indoor navigation. IEEE Transactions on Robotics and Automation, Vol. 15, No. 6, pp. 990–1000.CrossRefGoogle Scholar
  24. 24.
    Zelinsky, A. (1992): A mobile robot navigation exploration algorithm. IEEE Transactions on Robotics and Automation, Vol. 8, pp. 707–717.CrossRefGoogle Scholar
  25. 25.
    Bandera, A., Urdiales, C. and Sandoval, F. (2001): An hierarchical approach to grid-based and topological maps integration for autonomous indoor navigation. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001), pp. 883–888, Maui, Hawaii, USA.Google Scholar
  26. 26.
    Pagac, D., Nebot, E.M. and Durrant-White, H. (1998): An evidential approach to map-building for autonomous vehicles”. IEEE Transactions on Robotics and Automation, Vol. 14, No. 4, pp. 623–629.CrossRefGoogle Scholar
  27. 27.
    Rencken, W.D. (1993): Concurrent localisation and map building for mobile robots using ultrasonic sensors. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, pp. 2192–2197, New York-USA.Google Scholar
  28. 28.
    Schiele, B. and Crowley, J. (1994): A comparision of position estimation techniques using occupancy grids. Robotics and autonomous systems, Vol. 12, pp. 163–171.CrossRefGoogle Scholar
  29. 29.
    Chen, D., Szczerba, R. and Uhran, J. (1997): A framed-quadtree approach for determining Euclidean shortest paths in 2-D environment. IEEE Transactions on Robotics and Automation, Vol. 13, No. 5, pp. 668–680.CrossRefGoogle Scholar
  30. 30.
    Gee, A.H., and Prager, R.W. (1995): Limitations of Neural Networks for solving the Traveling Salesman Problem. IEEE Transaction on Neural Networks, Vol. 6, No. 1, pp. 1542–1544.CrossRefGoogle Scholar
  31. 31.
    Larrañaga, P., Kuijpers, C.M., Murga, R.H., Inza, I. and Dizdarevic, S., (1999): Genetic algorithms for the Travelling Salesman Problem: a review of representations and operators. Artificial Intelligence, Vol. 13, No. 2, pp. 129–170.CrossRefGoogle Scholar
  32. 32.
    Latombe, J.C. (1991): Robot Motion Planning. Ed. Kluwer, Academic Publishers, Boston.CrossRefGoogle Scholar
  33. 33.
    Koren, Y. and Borenstein, J. (1991): Potential Fields Methods and their Inherent Limitations for Mobile Robot Navigation, IEEE International Conference on Robotics and Automation, pp. 1398–1404, California, USA.Google Scholar
  34. 34.
    Ulrich, I. and Borenstein, J. (1998): VFH- +: Reliable Obstacle Avoidance for Fast Mobile Robots. IEEE International Conference on Robotics and automation, pp. 1572–1577, Leuven, Belgium.Google Scholar
  35. 35.
    Minguez, J. and Montano, L. (2000): Nearness Diagram Navigation (ND): A New Real Time Collision Avoidance Approach. Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), pp. 2094–2100, Takamatsu, Japan.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Cristina Urdiales
    • 1
  • Antonio Bandera
    • 1
  • Eduardo Pérez
    • 1
  • Alberto Poncela
    • 1
  • Francisco Sandoval
    • 1
  1. 1.Dpto. Tecnología Electrónica, ETSI TelecomunicaciónUniversidad de MálagaMálagaSpain

Personalised recommendations