Skip to main content

Integration of Reactive Utilitarian Navigation and Topological Modeling

  • Chapter
Autonomous Robotic Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 116))

Abstract

This chapter describes a hybrid autonomous navigation system for mobile robots. The control architecture proposed is highly modular and is based on the concept of behavior, which is a generalization of the usual reactive interpretation of this term. The proposed navigation system involves a straightforward integration of reactive and deliberative modules, enabling global, model-based navigation and local, adaptive navigation. At the local navigation level, we introduce the concept of utilitarian navigation, which models low-level robot navigation as a functional optimization process. Thanks to this innovative perspective, we have been able to implement low-level tasks, like collision avoidance and sensory source search and evasion, which have been integrated into the hybrid navigation system. At the global navigation level, two fundamental problems are considered: (1) map or model building and (2) route planning. Fuzzy Petri nets (FPN) are used to construct topological maps. A minimum cost algorithm of the FPN propagation has been implemented for route planning and execution. This chapter also discusses the experimental work carried out with realistic simulations, as well as with a holonomic prototype built by the authors and a Nomad-200 mobile platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kortenkamp, D., Bonasso, R.P., Murphy, R. (1998) Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. AAAI Press/MIT Press, Menlo Park, California

    Google Scholar 

  2. Brooks, R.A. (1986) A robust layered control system for a mobile robot. IEEE J. of Robotics and Automation, 2(1), 230–237

    Article  MathSciNet  Google Scholar 

  3. Arkin, R. A. (1998) Behaviour-based Robotics. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  4. Tunstel, E. (2001) Ethology as an inspiration for adaptive behavior synthesis in autonomous planetary rovers. Autonomous Robots, 11, 333–339

    Article  MATH  Google Scholar 

  5. Moravec, H. P., Elfes, A. (1985) High resolution maps from wide angle sonar. Proc. of IEEE Int. Conf. on Robotics and Automation, 116–121

    Google Scholar 

  6. Cox, I. J. (1991) Blanche — An experiment in guidance and navigation of an autonomous robot vehicle. IEEE Trans, on Robots and Automation, 7(2), 193–204

    Article  Google Scholar 

  7. Kuipers, B. J. (2000) The spatial semantic hierarchy. Artificial Intelligence, 119, 191–233

    Article  MathSciNet  MATH  Google Scholar 

  8. Mataric, M. J. (1992) Integration of representation into goal-driven behavior-based robots. IEEE Trans, on Robotics and Automation, 8(3), 304–312

    Article  Google Scholar 

  9. Kurz, A. (1996) Constructing maps for mobile robot navigation based on ultrasonic range data. IEEE Trans, on Systems, Man and Cybernetics—Part B: Cybernetics, 26(2), 233–242

    Article  Google Scholar 

  10. Serradilla, F., Maravall, D. (1997) Cognitive modelling for navigation of mobile robots using the sensory gradient concept. In F. Pichler and R. Moreno-Diaz, (eds.), Computer Aided Systems Theory, LNCS 1333. Springer-Verlag, Berlin, 273–284

    Google Scholar 

  11. Baker, T.P., Shaw, A. (1989) The Cyclic Executive Model and Ada. J. of Real-Time Systems, 1(1), 7–25

    Article  Google Scholar 

  12. Burns, A., Hayes, N., Richardson, M.F. (1995) Generating feasible cyclic schedules. Control Eng. Practice, 3(2), 152–162

    Google Scholar 

  13. De Lope, J. (1998) Modelado de entornos con tecnicas basadas en Redes de Petri Borrosas para la exploracion y planificacion de robot autonomos. Ph.D. Thesis Dissertation. Department of Artificial Intelligence, Universidad Politecnica de Madrid

    Google Scholar 

  14. Khatib, O. (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int. J. of Robotics Research, 5(1), 90–98

    Article  MathSciNet  Google Scholar 

  15. Krogh, B.H., Thorpe, C.E. (1986) Integrated path planning and dynamic steering control for autonomous vehicles. Proc. of IEEE Int. Conf. on Robotics and Automation, 1664–1669

    Google Scholar 

  16. Koren, Y., Bornestein, J. (1991) Potential field methods and their inherent limitations for mobile robot navigation. Proc. of IEEE Int. Conf. on Robotics and Automation, 1398–1404

    Google Scholar 

  17. Maravall, D., De Lope, J. (2002) Integration of Artifical Potential Field Theory and Sensory-based Search in Autonomous Navigation. Proc. of the IFAC2002

    Google Scholar 

  18. Latombe, J-C. (1991) Robot Motion Planning. Kluwer Academic, Boston, Massachusetts

    Book  Google Scholar 

  19. Adams, M.D. (1999) High speed target pursuit and asymptotic stability in mobile robotics. IEEE Trans, on Robotics and Automation, 15, 230–237

    Article  Google Scholar 

  20. Nehmzow, U., Smithers, T. (1991) Using motor actions for location recognition. Proc. of the First European Conf. on Artificial Life, 96–104

    Google Scholar 

  21. De Lope, J., Maravall, D. (2001) Landmark recognition for autonomous navigation using odometric information and a network of perceptrons. In J. Mira and A. Prieto, (eds.), Bio-Inspired Applications of Connectionism, LNCS-2085. Springer-Verlag, Berlin, 451–458

    Chapter  Google Scholar 

  22. Murata, T. (1989) Petri Nets: Properties, analysis and applications. Proc. of the IEEE, 77(4), 541–580

    Article  Google Scholar 

  23. Looney, C.L. (1988) Fuzzy Petri Nets for rule-based decisionmaking. IEEE Trans, on Systems, Man, and Cybernetics, 18(1), 178–183

    Article  Google Scholar 

  24. Chen, S. M., Ke, J. S., Chang, J. F. (1990) Knowledge representation using Fuzzy Petri Nets. IEEE Trans, on Knowledge and Data Engineering, 2(3), 311–319

    Article  Google Scholar 

  25. Yu, S.K. (1995) Comments on “Knowledge representation using Fuzzy Petri Nets”. IEEE Trans, on Knowledge and Data Engineering, 7(1), 190–191

    Google Scholar 

  26. Agre, P. E., Chapman, D. (1991) What are plans for? In P. Maes (ed.), Designing Autonomous Robots. MIT Press, Cambridge, Massachusetts, 17–34

    Google Scholar 

  27. Payton, D. W. (1991) Internalized Plans: A representation for action resources. In P. Maes (ed.), Designing Autonomous Robots. MIT Press, Cambridge, Massachusetts, 89–103

    Google Scholar 

  28. De Lope, J., Maravall, D., Zato, J. G. (1998) Topological modeling with Fuzzy Petri Nets for autonomous mobile robots. In A.P. del Pobil, J. Mira and M. Ali, (eds.), Task and Methods in Applied Artificial Intelligence, LNCS-1416. Springer-Verlag, Berlin, 290–299

    Chapter  Google Scholar 

  29. Maravall, D., De Lope, J., Serradilla, F. (2000) Combination of model-based and reactive methods in autonomous navigation. Proc. of the IEEE Int. Conf. on Robotics and Automation, 2328–2333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Lope, J., Maravall, D. (2003). Integration of Reactive Utilitarian Navigation and Topological Modeling. In: Zhou, C., Maravall, D., Ruan, D. (eds) Autonomous Robotic Systems. Studies in Fuzziness and Soft Computing, vol 116. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1767-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1767-6_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2523-7

  • Online ISBN: 978-3-7908-1767-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics