Applied Soft Computing Strategies for Autonomous Field Robotics

  • Edward Tunstel
  • Ayanna Howard
  • Terry Huntsberger
  • Ashitey Trebi-Ollennu
  • John M. Dolan
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 116)


This chapter addresses computing strategies designed to enable field mobile robots to execute tasks requiring effective autonomous traversal of natural outdoor terrain. The primary focus is on computer vision-based perception and autonomous control. Hard computing methods are combined with applied soft computing strategies in the context of three case studies associated with real-world robotics tasks including planetary surface exploration and land survey or reconnaissance. Each case study covers strategies implemented on wheeled robot research prototypes designed for field operations.


Mobile Robot Soft Computing Stereo Pair Fuzzy Logic Control Soft Computing Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fu, K. S., Gonzalez, R. C, Lee, C. S. G. (1987): Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Dudek, G., Jenkin, M. (2000): Computational Principles of Mobile Robotics. Cambridge University Press, Cambridge, UKMATHGoogle Scholar
  3. 3.
    Driankov, D., Saffiotti, A., (Eds.) (2001): Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Fuzziness and Soft Computing Series 61, Physica-Verlag, HeidelbergGoogle Scholar
  4. 4.
    Thrun, S. (2000): Probabilistic Algorithms in Robotics. Tech. Report CMU-CS-00–126, Computer Science Department, Carnegie Mellon University, Pittsburgh, PAGoogle Scholar
  5. 5.
    Dubowsky, S., Farritor, S., et al. (1996): Research on Field and Space Robotic Systems. In: Proc. ASME Computers in Engineering Conf., Irvine, CAGoogle Scholar
  6. 6.
    Hagras, H., Callaghan, V., Colley, M. (2001): Outdoor Mobile Robot Learning and Adaptation. IEEE Robotics & Automation Magazine 8, 3, 53–69CrossRefGoogle Scholar
  7. 7.
    Schenker, P. S., Pirjanian, P., et al. (2000): Reconfigurable Robots for All Terrain Exploration. In: McKee, G. T., Schenker, P. S. (Eds.): Proc. SPIE 4196, Sensor Fusion and Decentralized Control in Robotic Systems III. Boston, MAGoogle Scholar
  8. 8.
    Gauss, V. A., Bay, J. S. (1998): A Fuzzy Logic Solution for Navigation of an Autonomous Subsurface Planetary Exploration Robot. In: Proc. IEEE Intl. Symp. on Intelligent Control, Gaithersburg, MD, 559–564Google Scholar
  9. 9.
    Kaplan, M. H. (1976): Modern Spacecraft Dynamics and Control. John Wiley & Sons, New YorkGoogle Scholar
  10. 10.
    Mishkin, A., Morrison, J., Nguyen, T., et al. (1998): Experiences with Operations and Autonomy of the Mars Pathfinder Microrover. In: Proc. IEEE Aerospace Conf., Aspen, COGoogle Scholar
  11. 11.
    Matthies, L. (1992): Stereo Vision for Planetary Rovers: Stochastic modeling to near real-time implementation. Intl. J. Computer Vision 8, 71–91CrossRefGoogle Scholar
  12. 12.
    Belhumeur, P. N. (1993): A Binocular Stereo Algorithm for Reconstructing Sloping, Creased, and Broken Surfaces in the Presence of Half-occlusion. In: Proc. Intl. Conf. on Computer Vision. New York, NY, 431–438Google Scholar
  13. 13.
    Churchland, P. S., Sejnowski, T. J. (1993): The Computational Brain. MIT Press, Cambridge, MAGoogle Scholar
  14. 14.
    Daugman, J. G. (1985): Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-dimensional Visual Cortical Filters. J. Optical Society of America A 2, 1160–1169CrossRefGoogle Scholar
  15. 15.
    Hubel, D. H., Wiesel, T. N. (1963): Shape and Arrangement of Columns in the Cat’s Striate Cortex. J. of Physiology 165, 559–568Google Scholar
  16. 16.
    Dobbins, A., Zucker, S. S., Cynader, M. S. (1987): Endstrapped Neurons in the Visual Cortex as a Substrate for Calculating Curvature. Nature 329, 438–441CrossRefGoogle Scholar
  17. 17.
    Mallat, S., Zhong, S. (1992): Characterization of Signals from Multiscale Edges. IEEE Trans. PAMI 14, 710–732CrossRefGoogle Scholar
  18. 18.
    Andersson, L., Hall N., Jawerth, B. et al (1994): Wavelets on Closed Subsets of the Real Line. In: Schumacher, L. L., Webb, G. (Eds.): Topics in the Theory and Applications of Wavelets. Academic Press, New York, NYGoogle Scholar
  19. 19.
    Cohen, A., Daubechies, I., Jawerth, B., Vial, P. (1993): Multiresolution Analysis, Wavelets and Fast Algorithms on an Interval. Comptes Rendes 316, I, 417–421MathSciNetMATHGoogle Scholar
  20. 20.
    Hoffman, B. D., Baumgartner, E. T., Huntsberger, T., Schenker, P. S. (1999): Improved Rover State Estimation in Challenging Terrain. Autonomous Robots 6, 2, 113–130CrossRefGoogle Scholar
  21. 21.
    Huntsberger, T. L. (1990): Comparison of Techniques for Disparate Sensor Fusion. In: Proc. SPIE Symp. Sensor Fusion III: 3-D Perception and Recognition 1383, Boston, MA, 589–595Google Scholar
  22. 22.
    Kohonen, T. (1989): Self-Organization and Associative Memory, 3rd Edition. Springer-Verlag, BerlinCrossRefGoogle Scholar
  23. 23.
    Pal, N. R., Bezdek, J. C, Tsao, E. C.-K. (1993): Generalized Clustering Networks and Kohonen’s Self-organizing Scheme. IEEE Trans. Neural Networks 4, 549–557CrossRefGoogle Scholar
  24. 24.
    Bezdek, J. C. (1981): Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New YorkMATHCrossRefGoogle Scholar
  25. 25.
    Huntsberger, T. L., Jacobs, C. L., Cannon, R. L. (1985): Iterative Fuzzy Image Segmentation. Pattern Recognition 18, 131–138CrossRefGoogle Scholar
  26. 26.
    Huntsberger, T. L., Ajjimarangsee, P. (1990): Parallel Self-organizing Feature Maps for Unsupervised Pattern Recognition. Intl. J. of General Systems 16, 357–372CrossRefGoogle Scholar
  27. 27.
    Wilcox, B. H. (1994): Non-geometric Hazard Detection for a Mars Microrover. In: NASA/AIAA Conference on Intelligent Robotics in Field, Factory, Service, and Space. Houston, TX, 675–684Google Scholar
  28. 28.
    Gillespie, T. D. (1992): Fundamentals of Vehicle Dynamics. Society of Automotive Engineers, Inc.Google Scholar
  29. 29.
    Tunstel, E., Howard, A. (2002): Approximate Reasoning for Safety and Survivability of Planetary Rovers. Fuzzy Sets and Syst. Elsevier Science, In press.Google Scholar
  30. 30.
    Howard, A., Seraji, H. Tunstel, E. (2001): A Rule-based Fuzzy Traversability Index for Mobile Robot Navigation. In: IEEE Intl. Conf. Robotics and Automation. Seoul, Korea, 3067–3071Google Scholar
  31. 31.
    Diamantaras, K., Kung, S. Y. (1993): Principal Component Neural Networks: Theory and applications. John Wiley & Sons, New YorkGoogle Scholar
  32. 32.
    Baumgartner, E. T., Aghazarian, H., Trebi-Ollennu, A. (2001): Rover Localization Results for the FIDO Rover. In: Proc. SPIE Conf. Sensor Fusion and Decentralized Control in Autonomous Robotic Systems IV 4571.Newton, MAGoogle Scholar
  33. 33.
    Goel P., Roumeliotis S. I., Sukhatme G. S. (1999): Robust Localization using Relative and Absolute Position Estimates. In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. Kyongju, Korea, 1134–1140Google Scholar
  34. 34.
    Barshan, B., Durrant-Whyte, H. F. (1995): Inertial Navigation Systems for Mobile Robots. IEEE Trans. Robotics and Automation 11, 328–342CrossRefGoogle Scholar
  35. 35.
    Olson, C. F., Matthies, L. H. et al (2001): Stereo Ego-motion Improvements for Robust Rover Navigation. In: Proc. IEEE Intl. Conf. on Robotics and Automation. Seoul, Korea, 1099–1104Google Scholar
  36. 36.
    Bellutta, P., Manduchi, R., Matthies, L., Rankin, A. (2000): Terrain Perception for DEMO III. In: Proc. Intelligent Vehicles Conf. Dearborn, MIGoogle Scholar
  37. 37.
    Macedo, J., Manduchi, R., Matthies, L. (2000): Ladar-based Discrimination of Grass from Obstacles for Autonomous Navigation. In: 7th Intl. Symp. on Experimental Robotics. Waikiki Beach, HawaiiGoogle Scholar
  38. 38.
    Wang, L-X. (1994): Adaptive Fuzzy Systems and Control Design and Stability Analysis. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  39. 39.
    Trebi-Ollennu, A. (1996): Robust Nonlinear Control Designs using Adaptive Fuzzy Systems. Ph.D. thesis, Dept. Aerospace and Guidance Systems, School of Engrg, and Applied Science, Royal Military College of Science, Shrivenham, Cranfield UniversityGoogle Scholar
  40. 40.
    Trebi-Ollennu, A., Dolan, J. M., Khosla, P. K. (2001): Adaptive Fuzzy Throttle Control for an All-terrain Vehicle. In: Proc. Instn. Mech. Engrs., Part I: J Syst. and Control Engrg. 215, 189–198Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Edward Tunstel
    • 1
  • Ayanna Howard
    • 1
  • Terry Huntsberger
    • 1
  • Ashitey Trebi-Ollennu
    • 1
  • John M. Dolan
    • 2
  1. 1.NASA Jet Propulsion Laboratory, CaltechPasadenaUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations