Introduction to Fusion Based Systems — Contributions of Soft Computing Techniques and Application to Robotics

  • M. Oussalah
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 116)


Data/information fusion, as a methodology to integrate information stemming from different sources to get a more refined and meaningful knowledge, has gained a lot of interest within several communities as it sounds from the number of publications and successful applications in this area. This chapter is aimed to explore how the fusion methodology is decomposed into a set of primary subtasks where the elicitation and the architecture play a central role in the fusion process. Particularly the contributions of soft Computing techniques at various levels of the fusion architecture are laid bare. Some exemplifications, through the use of seriai and parallel architectures, employing both probabilistic and possibilistic approaches, have been carried out. Finally a robotics application consisting in a localization of a mobile robot has been performed and shows how the different steps of the fusion architecture have been handled.


Data Fusion Fusion Process Ultrasonic Sensor Possibility Distribution Evidence Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Data Fusion Lexicon, Data Fusion Subpanel of the Joint Directors of Laboratories, Technical Panel for C3, F.E. White Code 4202, NOSC, San Diego, CA, 1991Google Scholar
  2. 2.
    Luo R. C, Kay M. K. (1992) Multisensor integration and fusion in intelligent Systems, In: M. A. Abidi and R. C. Gonzalez (eds), Data Fusion in Robotics and Machine Intelligence, Academie Press 1992, 1–135.Google Scholar
  3. 3.
    Hall D. L., Llinas J. (2001), An introduction to multisensor data fusion, Proceedings of the IEEE 85(1), 6–21CrossRefGoogle Scholar
  4. 4.
    Gupta, M. M. (1992) Fuzzy Sets and Systems, McGraw-Hill Encyclopedia of Science & Technology. McGraw-Hill: New YorkGoogle Scholar
  5. 5.
    Dubois D, Prade H. (1980) Fuzzy Sets and Systems, Theory and Applications, Kluwer Academie, New YorkGoogle Scholar
  6. 6.
    Zadeh L. A. (1978) Fuzzy sets as a basis for a theory of possibility theory, Fuzzy Sets and Systems 1, 3–28MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Shafer G. (1976) A Mathematical Theory of Evidence, Princeton University Press Princeton, New JerseyMATHGoogle Scholar
  8. 8.
    Smets P. (1988) Belief Functions, in: Non Standard Logics for Automated Reasoning. In: P. Smets, A. Mamdani, D. Dubois and H. Prade (eds) Academie Press, London, 253–286Google Scholar
  9. 9.
    Wang Z., Klir G. J. (1995) Fuzzy Measures, Plenum Press, New YorkGoogle Scholar
  10. 10.
    Choquet G. (1953) Theory of Capacities, Annals of Institute of Fourrier 5, 131–295MathSciNetCrossRefGoogle Scholar
  11. 11.
    Grabish M., Nguyen H. T., Walker A. E. (1994) Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference, Kluwer Academie PublishersGoogle Scholar
  12. 12.
    Dempster P. (1967) Upper and Lower probabilities induced by a multivalued mapping, Annals of Mathematical Statistics 38, 325–339MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Walley P. (1991) Statistical Reasoning With Imprecise Probabilities, Chapman and HallMATHGoogle Scholar
  14. 14.
    DeClaris N. (1992) Neural Network, McGraw-Hill Encyclopedia of Science & Technology, McGraw-Hill: New YorkGoogle Scholar
  15. 15.
    Masters T. (1993) Practical Neural Network Recipes in C++, Academie Press, Inc, Harcourt Brace and Company Publishers, BostonGoogle Scholar
  16. 16.
    Genest C, Zidek J. V. (1986) Combining probability distributions: A critique and an annotated bibliography (with discussions). Statistical Science, 1, 114–148MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bar-Shalom Y., Foortmann T. E. (1988) Tracking and Data Association, New York Academie PressMATHGoogle Scholar
  18. 18.
    Tou J. T., Gonzalez R. C. (1974), Pattern Recognition Principles, Addison-Welly Publishing CompanyMATHGoogle Scholar
  19. 19.
    Hughes T. J. (1989) Sensor Fusion in a Military Avionics Environment, Measurement and Control, 203–205Google Scholar
  20. 20.
    IEEE, Special issue: data fusion, February 1997, Proceedings IEEEGoogle Scholar
  21. 21.
    Abidi M. A., and Gonzalez R. C. (1992) Data Fusion in Robotics and Machine Intelligence, Academie PressMATHGoogle Scholar
  22. 22.
    Harris C. J., Read A. B. (1988) Knowledge-based Fuzzy Motion Control of Autonomous Vehicles. In: Proceedings of the IFAC Workshop Artificial Intelligence in Real-Time Control, Swansea, UK, 139–44Google Scholar
  23. 23.
    Dailey D. J., Harn P., Lin P. J. (1996) ITS Data Fusion, Research, Technical Report T9903, Washington State Transportation Center (TRAC)Google Scholar
  24. 24.
    Pau L. F. (1988) Sensor Data Fusion, Journal of Robotics Intelligent Systems, 1, 103–116CrossRefGoogle Scholar
  25. 25.
    Blackman S. S. (1986) Multiple Target Tracking with Radar Applications, Artech House Inc Norwood, MAGoogle Scholar
  26. 26.
    Kirson, A., Smith, B.C., Boyce, D., Shofer J. (1992) The Evolution of ADVANCE, In: Proceedings of the Third International Conference on Vehicle Navigation & Information Systems. IEEE, 516–523CrossRefGoogle Scholar
  27. 27.
    Martinez, D., Esteve, D., Demmou H. (1990) Evaluation of a modular multilayer architecture for recognizing dangerous situations in car driving, In: Proceedings of Neuro-Nimes ′90. Third International Workshop, Nimes, France, 71–80Google Scholar
  28. 28.
    Dasarathy V. B. (1994) Decision Fusion, IEEE Computer Society PressGoogle Scholar
  29. 29.
    Dasarathy V. B. (1997) Sensor fusion potentiel exploitation -innovative architecture and illustrative applications, Proceedings of IEEE 85, 24–39CrossRefGoogle Scholar
  30. 30.
    Ashton R. H. (1986) Combining the judgement of experts: how many and which ones? Organizational Behavior and Human Decision Process, 38, 405–414CrossRefGoogle Scholar
  31. 31.
    Hoyland A., Rausand M. (1994) System Reliability Theory, Models and Statistical Methods, John Wiley & SonsGoogle Scholar
  32. 32.
    Kalman R. E. (1960) A new approach to linear filtering and prediction problems, Trans. ASME, J. Basic Engineering, 82, 34–45Google Scholar
  33. 33.
    Kittler J., Fu K. S., Pau L. (1981) Pattern Recognition Theory and Applications, NATO ASI series, Dordrecht, The Netherlands: D. ReidelGoogle Scholar
  34. 34.
    Roubens M., Vincke P. (1989) Preference Modeling, Springer-Verlag, BerlinGoogle Scholar
  35. 35.
    Tanaka H., Uejima S., Asai K. (1982) Fuzzy linear regression model, IEEE Trans. Systems Man Cyberaetics 12, 903–907MATHCrossRefGoogle Scholar
  36. 36.
    Orlovsky S. A. (1978) Decision making with a fuzzy preference relation, Fuzzy Sets and Systems, 1, 155–167MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Roberts F. S. (1979) Measurement Theory, Encyclopedia of Mathematics and its Applications Vol. 7, Addison-Wesley Publishing CompanyGoogle Scholar
  38. 38.
    Durrant Whyte H. F. (1988) Integration, Coordination and Control Multi-Sensor Robot Systems, Kluwer Academie PublishersGoogle Scholar
  39. 39.
    Durrant-Whyte H. F., Rao, B.Y.S., Hu H. (1990) Toward a Fully Decentralized Architecture for Multi-sensor Data Fusion. In: Proceedings of IEEE International Conference on Robotics and Automatisa. Los Alamitos, Vol. 2, 1331–1336CrossRefGoogle Scholar
  40. 40.
    Zhan C. T. (1971) Graph theoretical methods for detecting and describing Gestalt cluster, IEEE Trans. on Computer C.20Google Scholar
  41. 41.
    Eckhardt D. E., Lee L. D. (1985) A theoretical basis for the analysis of multiversion software subject to coincident errors, IEEE Trans. Software Engineering, 11, 1511–1517MATHCrossRefGoogle Scholar
  42. 42.
    Parhami B. (1994) Voting algorithms, IEEE Trans. On Reliability, 43(4), 617–629CrossRefGoogle Scholar
  43. 43.
    Hall D. I. (1992) Mathematical Techniques in Multisensor Data Fusion, Artech HouseGoogle Scholar
  44. 44.
    Bezdek J. C. (1981) Pattern Recognition with Fuzzy Objective Function: Algorithms, Plenum pressMATHCrossRefGoogle Scholar
  45. 45.
    Bezdek J. C, Pal S. K. (1991) Fuzzy Models For Pattern Recognition, IEEE PressGoogle Scholar
  46. 46.
    Zwick R., Carlstein E., Budescu D. V. (1987) Measures of similarities, fuzzy concepts: a comparative analysis. Int. J. of Approximate Reasoning, 1, 221–242MathSciNetCrossRefGoogle Scholar
  47. 47.
    Aggarwal J. (1989) Multisensor Fusion, ASI series, Heidelberg, FRG: Springer-Verlag.Google Scholar
  48. 48.
    Waltz E., Llinas J. (1990) Multisensor Data Fusion, Artech House Inc. Norwood MAGoogle Scholar
  49. 49.
    Oxenham M. G., Kewley D. J., Nelson M. J. (1996) Measures of information for multi-level data fusion, SPIE Vol. 2755, 271–282CrossRefGoogle Scholar
  50. 50.
    Liebowitz J. (1993) Rule-based Expert Systems, In: R.C. Dorf (ed.), The Electrical Engineering Handbook. CRC Press: Boca Raton, FLGoogle Scholar
  51. 51.
    Crowley J. L. (1993) Principles and Techniques for Sensor Data Fusion, in: Data Fusion and Computer Vision, edited by J.K. Aggarwal, Springer-VerlagGoogle Scholar
  52. 52.
    Linn R. J., Hall D. L. (1991) A Survey of Multi-sensor Data Fusion Systems, In: Proceedings of the SPIE — The International Society for Optical Engineering SPI, Orlando, Vol. 1470, 13–29Google Scholar
  53. 53.
    Crowley J. L., Demazeau Y. (1993) Principles and Techniques for Sensor Data fusion, Signal processing 32, 5–27CrossRefGoogle Scholar
  54. 54.
    Oussalah M., Maaref H., Barret C. (2001) New Fusion Methodology Approach and Application to Mobile Robotics: Investigation in the Framework of Possibility Theory. International Journal of Information Fusion, 2(1), 31–48CrossRefGoogle Scholar
  55. 55.
    Sumner R. (1991) Data Fusion in Pathfinder and TravTek, In: Proceedings of VNIS ′91. Vehicle Navigation and Information Systems Conference, Dearborn, Vol. 1, 71–75Google Scholar
  56. 56.
    Dubois D., Prade H. (1991) Fuzzy sets in approximate reasoning: Part 1: Inference with possibility distributions, Fuzzy Sets and Systems 25th anniversary memorial volume, 40, 143–202MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Dubois D., Prade H. (1987) Fuzzy numbers: An overview, In: J. Bezdek (ed), Analysis of Fuzzy Information, CRS Press, 112–148Google Scholar
  58. 58.
    Zadeh L. A. (1975) Calculus of fuzzy restrictions, in: L.A Zadeh, K.S. Fu, M. Shimura and K. Tanaka (eds), Fuzzy Sets and Their Applications to Cognitive and Decision Processes, Academie Press, 1–39Google Scholar
  59. 59.
    Goodman I. R., Nguyen H. T. (1985) Uncertainty Models for Knowledge Based Systems, North-Holland, AmsterdamMATHGoogle Scholar
  60. 60.
    Zadeh L. A. (1979) A theory of approximate reasoning, In: Machine intelligence 9, J.E. Hayes, D. Michie and L.I. Kuich (eds), John Wiley & Sons, New York, 149–194Google Scholar
  61. 61.
    Klir G. J. (1990) A principle of uncertainty and information invariance, Int. Journal of General Systems 17, 249–275MATHCrossRefGoogle Scholar
  62. 62.
    Klir G. J., Wierman M. J. (1988) Uncertainty-Based Information, Physica-VerlagGoogle Scholar
  63. 63.
    Goodman I. R. (1982) Fuzzy sets as equivalence classes of random sets, In: R.R. Yager (ed.), Recent Advances in Fuzzy Sets and Possibility Theory, Pergamon Press, New York, 327–432Google Scholar
  64. 64.
    Kwakernaak H. (1978) Fuzzy random variables, I, Definition and theorems, Information Sciences, 15, 1–29MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Chang Y. H. O. (2001) Hybrid fuzzy least-squares regression analysis and its reliability measures, Fuzzy Sets and Systems, 119, 225–246MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Miyazaki A., Kwon K., Ishibuchi H., Tanaka H. (1994) Fuzzy regression analysis by fuzzy neural networks and its application, In: Proceedings of IEEE International Conference on Fuzzy Systems, 52–57Google Scholar
  67. 67.
    Oussalah M., De Schutter J. (2002) Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter, to appear in Information SciencesGoogle Scholar
  68. 68.
    Aumann R. J., Hait S. (1994) Handbook of Game Theory with Economie Applications Vol. I and Vol. II, ElsevierGoogle Scholar
  69. 69.
    Yager R. R. (1980) A generai class of fuzzy connectives, Fuzzy Sets and Systems, 4, 235–242MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Bobrow D. G. (1984) Qualitative Reasoning about Physical Systems, Artificial Intelligence, 24, North Holland, AmsterdamGoogle Scholar
  71. 71.
    Boutilier C. (1994) Conditional logics of normality: a modal approach. Artificial Intelligence, 68, 87–154MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Boutilier C. (1994) Unifying default reasoning and belief revision in a modal framework, Artificial Intelligence, 68, 33–85MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    De Campos L. M., Huete J. F. (1999) Independence concepts in possibility theory: Part I, Part II, Fuzzy Sets and Systems, 103, 127–152MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    McConway K. J. (1981) Marginalization and linear opinion pool, J. American Statistical Association, 76, 410–414MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Dubois D., Prade H. (1990) Aggregation of possibility measures, In: J. Kacprzyk and M. Fedrizzi (eds), Multiperson Decision Making Using Fuzzy Sets and Possibility Theories, Kluwer Academie Publishers, Netherlands, 55–63CrossRefGoogle Scholar
  76. 76.
    Klement E. P., Mesiar R., Pap E. (2000) Triangular Norms, Kluwer Academie Publishers DordrechtMATHGoogle Scholar
  77. 77.
    Hisdal E. (1987) Conditional possibilities independence and non-interaction, Fuzzy Sets and Systems, 1, 283–297CrossRefGoogle Scholar
  78. 78.
    Cox I. J (1991) Blanche, An experiment in guidance and navigation of an autonomous robot vehicle, IEEE Transaction on Robotics and Automation, 7, 193–204CrossRefGoogle Scholar
  79. 79.
    Patrouix O., Jouvencel B. (1993) Range information extraction using U_BAT an ultrasonic based aerial telemeter, In: Proceedings of Int. Conf. on Robotics and Automation, 1460–1465Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Oussalah
    • 1
  1. 1.CSRCity UniversityLondonUK

Personalised recommendations