Skip to main content

Multiresolution Vision in Autonomous Systems

  • Chapter
Autonomous Robotic Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 116))

Abstract

The performance of many autonomous systems based on artificial vision depends mainly on the speed of response and the field of view of the vision systems. The many tasks to be carried out, such as object detection, recognition, tracking, etc., the complexity of reliable algorithms and tasks to be done in real time, and the huge data volumes involved with stereo vision systems, imply processing times and resources that, in some cases, are incompatible with or unsuitable for acceptable system operation. Multiresolution systems are one alternative to cover wide fields of view without involving high data volumes and, therefore, considerably reduce the constraints imposed by off-the-shelf uniresolution vision systems.

Our work is related to adaptive space-variant sensors, able to supply any number of resolution levels with reconfigurable resolution profiles around regions or objects of interest, and to the specific algorithms and hierarchical data structures related to processing multiresolution data involved in tasks of image segmentation, object detection, etc. required for operation in dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marr D (1982) Vision, MIT Press.

    Google Scholar 

  2. Swain MJ, Stricker M (1993) (eds.) Promising Directions in Active Vision. Int. Journal of Computer Vision 11:109–126.

    Google Scholar 

  3. Aloimonos JY, Weiss I, Bandyopadhyay A (1987) Active Vision. Int. Journal of Computer Vision 8:333–356.

    Google Scholar 

  4. Bajcsy R (1998) Active Perception. IEEE Proceedings, 76:996–1006.

    Google Scholar 

  5. Gremban KD, Ikeuchi K (1994) Planning Multiple Observations for Object Recognition. Int. Journal of Computer Vision 12:137–172.

    Article  Google Scholar 

  6. Ahuja N, Abbot AL (1993) Active Stereo: Integrating Disparity, Vergence, Focus, Aperture and Calibration for Surface Estimation. IEEE Transactions on Pattern Analysis And Machine Intelligence 15:1007–1029.

    Article  Google Scholar 

  7. Brunnstrm K, Eklundh J, Uhlin T (1996) Active Fixation for Scene Exploration. Intnl. Journal of Computer Vision 17:137–162.

    Article  Google Scholar 

  8. Van der Spiegel J, Kreider G, Claeys C, Debusschere I, Sandini G, Dario P, Fantini F, Belluti P and Soncini G, (1989) A foveated retina-like sensor using CCD technology, In Mead C and Ismail M, (Eds.), Analog VLSI implementation of Neural Systems, Kluwer, 189–211.

    Chapter  Google Scholar 

  9. Camacho P, Arrebola F, Sandoval F (1996) Shifted Fovea Multiresolution Geometries. IEEE Intnl. Conf. on Image Processing, ICIP-96, 1:307–310.

    Article  Google Scholar 

  10. Santos-Victor J, Sandini G, Curotto F, Garibaldi S (1995) Divergent Stereo in Autonomous Navigation: From Bees to Robots. I\t. Journal of Computer Vision 14:159–177.

    Article  Google Scholar 

  11. Yamamoto H, Yeshurun Y, Levine M (1996) An Active Foveated Vision System: Attentional Mechanisms and Scan Path Convergence Measures. Computer Vision and Image Understanding 63:50–65.

    Article  Google Scholar 

  12. Weiman CF, Chaikin G (1979) Logarithmic Spiral Grids for Image Processing. Computer Vision and Graphics Image Processing 11:197–226.

    Article  Google Scholar 

  13. Kathman A, Johnson E (1992) Binary Optics: new diffractive elements for the designer tool kit. Photonic Spectra 9:125–132.

    Google Scholar 

  14. Camacho P, Arrebola F, Sandoval F (1998) Multiresolution Sensors with Adaptive Structure. 24th IEEE Intnl. Conf. Industrial Electronics, IECON’98, 2:1230–1235.

    Google Scholar 

  15. Rojer AS, Schwartz EL (1990) Design considerations for space-variant visual sensor with complex-logartihmic geometry. 10th Intnl. Conf. on Pattern Recognition 2:278–285.

    Google Scholar 

  16. Scott P, Bandera C (1990) Hierarchical Multiresolution Data Structures and Algorithms for Foveal Vision Systems. IEEE Intnl. Conf on System, Man and Cybernetics, 832–834.

    Google Scholar 

  17. Mead C (1989) Adaptive retina. In Analog VLSI implementation of Neural Systems, C. Mead and M. Ismail (eds.), Kluwer Acad. Publishers, N.Y. Chap. 8: 189–210.

    Chapter  Google Scholar 

  18. Pardo F, Dierickx B, Scheffer D (1998) Space-Variant Non-orthogonal Structure CMOS Image Sensor Design. IEEE Journal of Solid-State Circuits 33:842–849.

    Article  Google Scholar 

  19. Tistarelli M, Sandini G (1993) On the Advantages of Polar and Log-Polar Mapping for Direct Estimation of Time-to-impact from Optical Flow. IEEE Trans. PAMI, 15:401–410.

    Article  Google Scholar 

  20. Capurro C, Panerai F, Sandini G (1997) Dynamic Vergence Using Log-Polar Images. Int. Journal of Computer Vision 24:79–94.

    Article  Google Scholar 

  21. Bederson B, Wallace RS, Schwartz E (1994) A miniature pan-tilt actuator: the spherical pointing motor. IEEE Transactions on Robotics and Automation, 10a: 298–308.

    Article  Google Scholar 

  22. Arrebola F, Urdiales C, Camacho P, Sandoval F (1998) Vision System Based on Shifted Fovea Multiresolution Retinotopologies. 24th IEEE Intnl. Conf. Industrial Electronics IECON’98, 3:1357–1361.

    Google Scholar 

  23. Camacho P, Arrebola F, Sandoval F (1997) Adaptive Fovea Structures for Space-variant Sensors, In Adel Bimbo (ed.) Image Analysis and Processing. Springer 1:422–429.

    Chapter  Google Scholar 

  24. Jolion JM, Rosenfeld A, A Pyramid Framework for Early Vision, Kluwer Acad. Publishers, The Netherlands, 1994.

    Book  Google Scholar 

  25. Arrebola F, Camacho P, Bandera A, Sandoval F (1999) Corner Detection and Curve Representation by Circular Histograms of Contour Chain Code. Electronics Letters 35: 1065–1067.

    Article  Google Scholar 

  26. Bandera A, Urdiales C, Arrebola F, Sandoval F (1999) 2D Object Recognition Based on Curvature Functions Obtained from Local Histograms of the Contour Chain Code. Pattern Recognition Letters 20:49–55.

    Article  MATH  Google Scholar 

  27. Burt PJ, Hong TH, Rosenfeld A (1981) Segmentation and Estimation of Image Region Properties Through Cooperative Hierarchical Computation IEEE Transactions on Systems, Man and Cybernetics 11:802–809.

    Article  Google Scholar 

  28. Arrebola F (1998), Sistema Multirresolucin Basado en Imgenes Multirresolucin de Fvea Desplazable, (in Spanish) Ph. D. thesis, Malaga University.

    Google Scholar 

  29. Arrebola F, Camacho P, Sandoval F (1997) Generalization of Shifted Fovea Multiresolution Geometries Applied to Object Detection. In Adel Bimbo (ed.) Image Analysis and Processing. Springer 2:477–484.

    Chapter  Google Scholar 

  30. Coslado F, Camacho P, Gonzlez M, Sandoval F (2001) Hardware Implementation of a Node Linking Segmentation Algorithm, Proc. XVI Conf. on Design of Circuits and Integrated Systems, DCIS2001, 654–659.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Camacho, P., Arrebola, F., Sandoval, F. (2003). Multiresolution Vision in Autonomous Systems. In: Zhou, C., Maravall, D., Ruan, D. (eds) Autonomous Robotic Systems. Studies in Fuzziness and Soft Computing, vol 116. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1767-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1767-6_17

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2523-7

  • Online ISBN: 978-3-7908-1767-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics