Advertisement

Multiresolution Vision in Autonomous Systems

  • Pelegrín Camacho
  • Fabián Arrebola
  • Francisco Sandoval
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 116)

Abstract

The performance of many autonomous systems based on artificial vision depends mainly on the speed of response and the field of view of the vision systems. The many tasks to be carried out, such as object detection, recognition, tracking, etc., the complexity of reliable algorithms and tasks to be done in real time, and the huge data volumes involved with stereo vision systems, imply processing times and resources that, in some cases, are incompatible with or unsuitable for acceptable system operation. Multiresolution systems are one alternative to cover wide fields of view without involving high data volumes and, therefore, considerably reduce the constraints imposed by off-the-shelf uniresolution vision systems.

Our work is related to adaptive space-variant sensors, able to supply any number of resolution levels with reconfigurable resolution profiles around regions or objects of interest, and to the specific algorithms and hierarchical data structures related to processing multiresolution data involved in tasks of image segmentation, object detection, etc. required for operation in dynamic environments.

Keywords

Retinal Image Compute Cell Active Vision Camera Parameter Stereo Vision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marr D (1982) Vision, MIT Press.Google Scholar
  2. 2.
    Swain MJ, Stricker M (1993) (eds.) Promising Directions in Active Vision. Int. Journal of Computer Vision 11:109–126.Google Scholar
  3. 3.
    Aloimonos JY, Weiss I, Bandyopadhyay A (1987) Active Vision. Int. Journal of Computer Vision 8:333–356.Google Scholar
  4. 4.
    Bajcsy R (1998) Active Perception. IEEE Proceedings, 76:996–1006.Google Scholar
  5. 5.
    Gremban KD, Ikeuchi K (1994) Planning Multiple Observations for Object Recognition. Int. Journal of Computer Vision 12:137–172.CrossRefGoogle Scholar
  6. 6.
    Ahuja N, Abbot AL (1993) Active Stereo: Integrating Disparity, Vergence, Focus, Aperture and Calibration for Surface Estimation. IEEE Transactions on Pattern Analysis And Machine Intelligence 15:1007–1029.CrossRefGoogle Scholar
  7. 7.
    Brunnstrm K, Eklundh J, Uhlin T (1996) Active Fixation for Scene Exploration. Intnl. Journal of Computer Vision 17:137–162.CrossRefGoogle Scholar
  8. 8.
    Van der Spiegel J, Kreider G, Claeys C, Debusschere I, Sandini G, Dario P, Fantini F, Belluti P and Soncini G, (1989) A foveated retina-like sensor using CCD technology, In Mead C and Ismail M, (Eds.), Analog VLSI implementation of Neural Systems, Kluwer, 189–211.CrossRefGoogle Scholar
  9. 9.
    Camacho P, Arrebola F, Sandoval F (1996) Shifted Fovea Multiresolution Geometries. IEEE Intnl. Conf. on Image Processing, ICIP-96, 1:307–310.CrossRefGoogle Scholar
  10. 10.
    Santos-Victor J, Sandini G, Curotto F, Garibaldi S (1995) Divergent Stereo in Autonomous Navigation: From Bees to Robots. I\t. Journal of Computer Vision 14:159–177.CrossRefGoogle Scholar
  11. 11.
    Yamamoto H, Yeshurun Y, Levine M (1996) An Active Foveated Vision System: Attentional Mechanisms and Scan Path Convergence Measures. Computer Vision and Image Understanding 63:50–65.CrossRefGoogle Scholar
  12. 12.
    Weiman CF, Chaikin G (1979) Logarithmic Spiral Grids for Image Processing. Computer Vision and Graphics Image Processing 11:197–226.CrossRefGoogle Scholar
  13. 13.
    Kathman A, Johnson E (1992) Binary Optics: new diffractive elements for the designer tool kit. Photonic Spectra 9:125–132.Google Scholar
  14. 14.
    Camacho P, Arrebola F, Sandoval F (1998) Multiresolution Sensors with Adaptive Structure. 24th IEEE Intnl. Conf. Industrial Electronics, IECON’98, 2:1230–1235.Google Scholar
  15. 15.
    Rojer AS, Schwartz EL (1990) Design considerations for space-variant visual sensor with complex-logartihmic geometry. 10th Intnl. Conf. on Pattern Recognition 2:278–285.Google Scholar
  16. 16.
    Scott P, Bandera C (1990) Hierarchical Multiresolution Data Structures and Algorithms for Foveal Vision Systems. IEEE Intnl. Conf on System, Man and Cybernetics, 832–834.Google Scholar
  17. 17.
    Mead C (1989) Adaptive retina. In Analog VLSI implementation of Neural Systems, C. Mead and M. Ismail (eds.), Kluwer Acad. Publishers, N.Y. Chap. 8: 189–210.CrossRefGoogle Scholar
  18. 18.
    Pardo F, Dierickx B, Scheffer D (1998) Space-Variant Non-orthogonal Structure CMOS Image Sensor Design. IEEE Journal of Solid-State Circuits 33:842–849.CrossRefGoogle Scholar
  19. 19.
    Tistarelli M, Sandini G (1993) On the Advantages of Polar and Log-Polar Mapping for Direct Estimation of Time-to-impact from Optical Flow. IEEE Trans. PAMI, 15:401–410.CrossRefGoogle Scholar
  20. 20.
    Capurro C, Panerai F, Sandini G (1997) Dynamic Vergence Using Log-Polar Images. Int. Journal of Computer Vision 24:79–94.CrossRefGoogle Scholar
  21. 21.
    Bederson B, Wallace RS, Schwartz E (1994) A miniature pan-tilt actuator: the spherical pointing motor. IEEE Transactions on Robotics and Automation, 10a: 298–308.CrossRefGoogle Scholar
  22. 22.
    Arrebola F, Urdiales C, Camacho P, Sandoval F (1998) Vision System Based on Shifted Fovea Multiresolution Retinotopologies. 24th IEEE Intnl. Conf. Industrial Electronics IECON’98, 3:1357–1361.Google Scholar
  23. 23.
    Camacho P, Arrebola F, Sandoval F (1997) Adaptive Fovea Structures for Space-variant Sensors, In Adel Bimbo (ed.) Image Analysis and Processing. Springer 1:422–429.CrossRefGoogle Scholar
  24. 24.
    Jolion JM, Rosenfeld A, A Pyramid Framework for Early Vision, Kluwer Acad. Publishers, The Netherlands, 1994.CrossRefGoogle Scholar
  25. 25.
    Arrebola F, Camacho P, Bandera A, Sandoval F (1999) Corner Detection and Curve Representation by Circular Histograms of Contour Chain Code. Electronics Letters 35: 1065–1067.CrossRefGoogle Scholar
  26. 26.
    Bandera A, Urdiales C, Arrebola F, Sandoval F (1999) 2D Object Recognition Based on Curvature Functions Obtained from Local Histograms of the Contour Chain Code. Pattern Recognition Letters 20:49–55.MATHCrossRefGoogle Scholar
  27. 27.
    Burt PJ, Hong TH, Rosenfeld A (1981) Segmentation and Estimation of Image Region Properties Through Cooperative Hierarchical Computation IEEE Transactions on Systems, Man and Cybernetics 11:802–809.CrossRefGoogle Scholar
  28. 28.
    Arrebola F (1998), Sistema Multirresolucin Basado en Imgenes Multirresolucin de Fvea Desplazable, (in Spanish) Ph. D. thesis, Malaga University.Google Scholar
  29. 29.
    Arrebola F, Camacho P, Sandoval F (1997) Generalization of Shifted Fovea Multiresolution Geometries Applied to Object Detection. In Adel Bimbo (ed.) Image Analysis and Processing. Springer 2:477–484.CrossRefGoogle Scholar
  30. 30.
    Coslado F, Camacho P, Gonzlez M, Sandoval F (2001) Hardware Implementation of a Node Linking Segmentation Algorithm, Proc. XVI Conf. on Design of Circuits and Integrated Systems, DCIS2001, 654–659.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pelegrín Camacho
    • 1
  • Fabián Arrebola
    • 1
  • Francisco Sandoval
    • 1
  1. 1.Dpto. Tecnología Electrónica, ETSI TelecomunicaciónUniversidad de MálagaMálagaSpain

Personalised recommendations