Robot Vision Using Cellular Neural Networks

  • Marco Balsi
  • Xavier Vilasís-Cardona
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 116)


We show how Cellular Neural Networks (CNNs) can provide the necessary image processing to guide an autonomous mobile robot in a maze made of black lines on a light surface. The system consists of a fuzzy controller performing the elementary navigation tasks fed by the result of processing the image only by CNN techniques. We use this solution to make some considerations on more difficult problems such as curved or dashed line following and obstacle avoidance.


Mobile Robot Optical Flow Fuzzy Control Fuzzy Controller Obstacle Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chua, L.O., Yang, L. (1988) Cellular Neural Networks: Theory. IEEE Trans. Circ. Syst. CAS-35 1257–1272MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chua, L.O., Roska, T. (1993) The CNN Paradigm. IEEE Trans. Circ. Syst. CAS-I-40 147–156MathSciNetMATHGoogle Scholar
  3. 3.
    Harrer, H., Nossek, J.A. (1992) Discrete-time Cellular Neural Networks. Int. J. of Circ. Th. Appl. 20 453–467MATHCrossRefGoogle Scholar
  4. 4.
    Balsi, M., Maraschini, A., Apicella, G., Luengo, S., Solsona, J., Vilasís-Cardona, X. (2001) Cellular Neural Networks for mobile robot vision. Mira, J., Prieto, A. Eds. Proceedings of IWANN 2001, Lecture Notes in Computer Science 2085 484–491CrossRefGoogle Scholar
  5. 5.
    Vilasís-Cardona, X., Luengo, S., Solsona, J., Apicella, G., Maraschini, A., Balsi, M. (2001) Mobile robot vision using Cellular Neural Networks. Tan, K.K., Lim, S. Y. Eds. Proceedings of CIRAS 2001 ISSN 0219–6131 367–372Google Scholar
  6. 6.
    Latombe, J.C. (1991) Robot Motion Planning. Kluwer Academic Publishers Boston, MACrossRefGoogle Scholar
  7. 7.
    Singhal, A. (1997) Issues in Autonomous Mobile Robot Navigation. University of Rochester Computer Science Department Technical ReportGoogle Scholar
  8. 8.
    Luo, R.C., Kay, M.G. (1992) Data Fusion and Sensor Integration: State-ofArt in the 1990s. Data Fusion in Robotics and Machine Intelligence. Academic Press Ltd San Diego CAGoogle Scholar
  9. 9.
    ARGO Project (2000), (as of December 2000)Google Scholar
  10. 10.
    Chen, K.H., Tsai, W.H. (1997) Vision-Based Autonomous Land Vehicle Guidance in Outdoor Road Environments using Combined Line and Road Following Techniques. Journal of Robotic Systems 14 (10) 711–728CrossRefGoogle Scholar
  11. 11.
    Cheok, K.C., Smid, G.E., Kobayashi, K., Overholt, J.L., Lescoe, P. (1997) A Fuzzy Logic Intelligent Control System Paradigm for an In-Line-of-Sight Leader-Following HMMWV. Journal of Robotic Systems 14(6) 407–420CrossRefGoogle Scholar
  12. 12.
    Maeda, M., Shimakawa, M., Murakami, S. (1995) Predictive Fuzzy Control of an Autonomous Mobile Robot with Forecast Learning Function. Fuzzy Sets and Systems 72 51–60CrossRefGoogle Scholar
  13. 13.
    Liñan, L., Espejo, S., Domínguez-Castro, R., Rodríguez-Vázquez, A. (2002) ACE4K: An Analog VO 64x64 Visual MicroProcessor Chip with 7-bit Analog Accuracy. Int. J. of Circ. Th. Appl., in pressGoogle Scholar
  14. 14.
    Kananen, A., Paasio, A., Laiho, M., Halonen, K. (2002) CNN Applications from the Hardware Point of View: Video Sequence Segmentation. Int. J. of Circ. Th. Appl., in pressGoogle Scholar
  15. 15.
    Roska, T., Chua, L.O. (1993) The CNN Universal Machine: an Analogic Array Computer. IEEE Trans. Circ. Syst. CAS-I-40 163–173MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kék, L., Zarándy, A. (1998) Implementation of large-neighbourhood non-linear templates on the CNN universal machine. Int. J. of Circ. Th. Appl. 26 551–566MATHCrossRefGoogle Scholar
  17. 17.
    Zaràndy, A. (1999) The Art of CNN Template Design. Int. J. of Circ. Th. Appl. 27 5–23MATHCrossRefGoogle Scholar
  18. 18.
    Kozek, T., Roska, T., Chua, L.O. (1993) Genetic algorithm for CNN Template Learning. IEEE Trans. Circ. Syst., CAS-I-40 392–402CrossRefGoogle Scholar
  19. 19.
    Roska, T., Kék, L., Nemes, L., Zaràndy, À., Brendel M. (2000) CSL-CNN Software Library. Report of the Analogical and Neural Computing Laboratory, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, HungaryGoogle Scholar
  20. 20.
    Balsi, M. (1998), Focal-Plane Optical Flow Computation by Foveated CNNs. Proc. of Fifth IEEE Int. Workshop on Cellular Neural Networks and their Applications (CNNA-98), London, UK, Apr. 14–17, 1998, 149–154Google Scholar
  21. 21.
    Shi, B.E. (1999) A one-dimensional CMOS focal plane array for Gabor-type image filtering. IEEE Trans. Circ. Syst. CAS-I-46 323–327CrossRefGoogle Scholar
  22. 22.
    Zanela, A., Taraglio, S. (1998) Seeing the Third Dimension in Stereo Vision Systems: a Cellular Neural Network Approach. Eng. Appl. Artif. Intel. 11 203–213CrossRefGoogle Scholar
  23. 23.
    Sargeni, F., Bonaiuto, V. (2001) CNN Cell for Computing Disparity Map. Elec. Lett. 37 682–683CrossRefGoogle Scholar
  24. 24.
    Titus, A.H., Drabik, T.J. (2000) Analog VLSI Implementation of the Help if Needed Stereopsis Algorithm. IEEE Trans. Circ. Syst. CAS-II-47 1328–1337CrossRefGoogle Scholar
  25. 25.
    Szolgay, P., Katona, A., Eröss, Gy., Kiss, A. (1994) An Experimental System for Path Tracking of a Robot using a 16*16 Connected Component Detector CNN Chip with Direct Optical Input. Proc. of Third IEEE Int. Workshop on Cellular Neural Networks and their Applications (CNNA-94), Rome, Italy, Dec. 18–21, 1994, 261–266Google Scholar
  26. 26.
    Kosko, B. (1992) Neural Fuzzy Systems, Prentice Hall Englewood Cliffs, NJMATHGoogle Scholar
  27. 27.
    Hough, P.V.C. (1962) Method and means of recognizing complex patterns. U.S.Patent 3,069,654. See also Google Scholar
  28. Jain, A.K. (1989) Fundamentals of digital Image Processing, Prentice Hall Englewood Cliffs NJ.MATHGoogle Scholar
  29. 28.
    Vilariño, D.L., Brea, V.M., Cabello, D., Pardo, J.M. (1998) Discrete-time CNN for image segmentation by active contours. Patt. Rec. Lett, 19 721–734MATHCrossRefGoogle Scholar
  30. 29.
    Vilariño, D.L. (2001) Contornos activos a nivel de pixel: diseño e implementación sobre arquitecturas de redes no lineales celulares, Ph.D. thesis, Univ. of Santiago de Compostela, SpainGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marco Balsi
    • 1
  • Xavier Vilasís-Cardona
    • 2
  1. 1.Dipartimento di Ingegneria ElettronicaUniversità “La Sapienza”RomeItaly
  2. 2.Departament d’ElectrònicaUniversitat “Ramon Llull”, Enginyeria “La Salle”BarcelonaSpain

Personalised recommendations