Skip to main content

Mathematical Morphology and Spatial Relationships: Quantitative, Semi-Quantitative and Symbolic Settings

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 106))

Abstract

Basic mathematical morphology operations rely mainly on local information, based on the concept of structuring element. But mathematical morphology also deals with more global and structural information since several spatial relationships can be expressed in terms of morphological operations (mainly dilations). The aim of this paper is to show that this framework allows to represent in a unified way spatial relationships in various settings: a purely quantitative one if objects are precisely defined, a semi-quantitative one if objects are imprecise and represented as spatial fuzzy sets, and a qualitative one, for reasoning in a logical framework about space. This is made possible thanks to the strong algebraic structure of mathematical morphology, that finds equivalents in set theoretical terms, fuzzy operations and logical expressions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Allen. Maintaining Knowledge about Temporal Intervals. Comunications of the ACM, 26 (11): 832–843, 1983.

    Article  MATH  Google Scholar 

  2. N. Asher and L. Vieu. Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology. In IJCAI’95, pages 846–852, San Mateo, CA, 1995.

    Google Scholar 

  3. E. Bengoetxea, P. Larranaga, I. Bloch, and A. Perchant. Solving Graph Matching with EDAs Using a Permutation-Based Representation. In P. Larranaga and J. A. Lozano, editors, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, chapter 12, pages 239–261. Kluwer Academic Publisher, Boston, Dordrecht, London, 2001.

    Google Scholar 

  4. B. Bennett. Modal Logics for Qualitative Spatial Reasoning. Bulletin of the IGPL, 4 (1): 23–45, 1995.

    Article  Google Scholar 

  5. I. Bloch. About Properties of Fuzzy Mathematical Morphologies: Proofs of Main Results. Technical report, Télécom Paris 93D023, December 1993.

    Google Scholar 

  6. I. Bloch. Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (7): 657–664, 1999.

    Article  Google Scholar 

  7. I. Bloch. Fuzzy Relative Position between Objects in Image Processing: New Definition and Properties based on a Morphological Approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 7 (2): 99–133, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Bloch. On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition, 32 (11): 1873–1895, 1999.

    Article  Google Scholar 

  9. I. Bloch and J. Lang. Towards Mathematical Morpho-Logics. In 8th International Conference on Information Processing and Management of Uncertainty in Knowledge based Systems IPMU 2000, volume III, pages 1405–1412, Madrid, Spain, jul 2000.

    Google Scholar 

  10. I. Bloch and H. Maître. Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition, 28 (9): 1341–1387, 1995.

    Article  MathSciNet  Google Scholar 

  11. I. Bloch, H. Maître, and M. Anvari. Fuzzy Adjacency between Image Objects. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5 (6): 615–653, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Bloch, C. Pellot, F. Sureda, and A. Herment. Fuzzy Modelling and Fuzzy Mathematical Morphology applied to 3D Reconstruction of Blood Vessels by Multi-Modality Data Fusion. In D. Dubois R. Yager and H. Prade, editors, Fuzzy Set Methods in Information Engineering: A Guided Tour of Applications, chapter 5, pages 93–110. John Wiley and Sons, New-York, 1996.

    Google Scholar 

  13. G. Borgefors. Distance Transforms in the Square Grid. In H. Maître, editor, Progress in Picture Processing, Les Houches, Session LVIII, 1992, chapter 1.4, pages 46–80. North-Holland, Amsterdam, 1996.

    Google Scholar 

  14. B. Chellas. Modal Logic, an Introduction. Cambridge University Press, Cambridge, 1980.

    Book  MATH  Google Scholar 

  15. E. Clementini and O. Di Felice. Approximate Topological Relations. International Journal of Approximate Reasoning, 16: 173–204, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Cohn, B. Bennett, J. Gooday, and N. M. Gotts. Representing and Reasoning with Qualitative Spatial Relations about Regions. In O. Stock, editor, Spatial and Temporal Reasoning, pages 97–134. Kluwer, 1997.

    Google Scholar 

  17. B. de Baets. Fuzzy Morphology: a Logical Approach. In B. Ayyub and M. Gupta, editors, Uncertainty in Engineering and Sciences: Fuzzy Logic, Statistics and Neural Network Approach, pages 53–67. Kluwer Academic, 1997.

    Google Scholar 

  18. T.-Q. Deng and H. Heijmans. Grey-Scale Morphology Based on Fuzzy Logic. Technical Report PNA-R0012, CWI, Amsterdam, NL, 2000.

    Google Scholar 

  19. D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York, 1980.

    MATH  Google Scholar 

  20. D. Dubois and H. Prade. A Review of Fuzzy Set Aggregation Connectives. Information Sciences, 36: 85–121, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Dubois and H. Prade. Weighted Fuzzy Pattern Matching. Fuzzy Sets and Systems, 28: 313–331, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Dutta. Approximate Spatial Reasoning: Integrating Qualitative and Quantitative Constraints. International Journal of Approximate Reasoning, 5: 307–331, 1991.

    Article  Google Scholar 

  23. J. Freeman. The Modelling of Spatial Relations. Computer Graphics and Image Processing, 4 (2): 156–171, 1975.

    Article  Google Scholar 

  24. K. P. Gapp. Basic Meanings of Spatial Relations: Computation and Evaluation in 3D Space. In 12th National Conference on Artificial Intelligence, AAAI-94, pages 1393–1398, Seattle, Washington, 1994.

    Google Scholar 

  25. J. Gasos and A. Ralescu. Using Imprecise Environment Information for Guiding Scene Interpretation. Fuzzy Sets and Systems, 88: 265–288, 1997.

    Article  Google Scholar 

  26. J. Gasios and A. Saffiotti. Using Fuzzy Sets to Represent Uncertain Spatial Knowledge in Autonomous Robots. Journal of Spatial Cognition and Computation, 1: 205–226, 2000.

    Article  Google Scholar 

  27. T. Géraud, I. Bloch, and H. Maître. Atlas-guided Recognition of Cerebral Structures in MRI using Fusion of Fuzzy Structural Information. In CIMAF’99 Symposium on Artificial Intelligence, pages 99–106, La Havana, Cuba, March 1999.

    Google Scholar 

  28. H. J. A. M. Heijmans and C. Ronse. The Algebraic Basis of Mathematical Morphology–Part I: Dilations and Erosions. Computer Vision, Graphics and Image Processing, 50: 245–295, 1990.

    Article  MATH  Google Scholar 

  29. G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen, London, UK, 1968.

    MATH  Google Scholar 

  30. J. M. Keller and X. Wang. Comparison of Spatial Relation Definitions in Computer Vision. In ISUMA-NAFIPS’95, pages 679–684, College Park, MD, September 1995.

    Google Scholar 

  31. L. T. Koczy. On the Description of Relative Position of Fuzzy Patterns. Pattern Recognition Letters, 8: 21–28, 1988.

    Article  MATH  Google Scholar 

  32. R. Krishnapuram, J. M. Keller, and Y. Ma. Quantitative Analysis of Properties and Spatial Relations of Fuzzy Image Regions. IEEE Transactions on Fuzzy Systems, 1 (3): 222–233, 1993.

    Article  Google Scholar 

  33. B. Kuipers. Modeling Spatial Knowledge. Cognitive Science, 2: 129–153, 1978.

    Article  Google Scholar 

  34. B. J. Kuipers and T. S. Levitt. Navigation and Mapping in Large-Scale Space. AI Magazine, 9 (2): 25–43, 1988.

    Google Scholar 

  35. J. Liu. A Method of Spatial Reasoning based on Qualitative Trigonometry. Artificial Intelligence, 98: 137–168, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.-F. Mangin, I. Bloch, J. Lopez-Krahe, and V. Frouin. Chamfer Distances in Anisotropic 3D Images. In EUSIPCO 94, pages 975–978, Edinburgh, UK, September 1994.

    Google Scholar 

  37. G. Matheron. Eléments pour une théorie des milieux poreux. Masson, Paris, 1967.

    Google Scholar 

  38. G. Matheron. Random Sets and Integral Geometry. Wiley, New-York, 1975.

    Google Scholar 

  39. P. Matsakis and L. Wendling. A New Way to Represent the Relative Position between Areal Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21 (7): 634–642, 1999.

    Article  Google Scholar 

  40. K. Miyajima and A. Ralescu. Spatial Organization in 2D Segmented Images: Representation and Recognition of Primitive Spatial Relations. Fuzzy Sets and Systems, 65: 225–236, 1994.

    Article  Google Scholar 

  41. A. Perchant and I. Bloch. Fuzzy Morphisms between Graphs. Fuzzy Sets and Systems, 2001.

    Google Scholar 

  42. A. Perchant, C. Boeres, I. Bloch, M. Roux, and C. Ribeiro. Model-based Scene Recognition Using Graph Fuzzy Homomorphism Solved by Genetic Algorithm. In GbR’99 2nd International Workshop on Graph-Based Representations in Pattern Recognition, pages 61–70, Castle of Haindorf, Austria, 1999.

    Google Scholar 

  43. D. J. Peuquet. Representations of Geographical Space: Toward a Conceptual Synthesis. Annals of the Association of American Geographers, 78 (3): 375–394, 1988.

    Article  Google Scholar 

  44. D. Pullar and M. Egenhofer. Toward Formal Definitions of Topological Relations Among Spatial Objects. In Third Int. Symposium on Spatial Data Handling, pages 225–241, Sydney, Australia, August 1988.

    Google Scholar 

  45. D. Randell, Z. Cui, and A. Cohn. A Spatial Logic based on Regions and Connection. In Principles of Knowledge Representation and Reasoning KR’92, pages 165–176, San Mateo, CA, 1992.

    Google Scholar 

  46. A. Rosenfeld. Fuzzy Digital Topology. Information and Control, 40: 76–87, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Rosenfeld. The Fuzzy Geometry of Image Subsets. Pattern Recognition Letters, 2: 311–317, 1984.

    Article  Google Scholar 

  48. A. Rosenfeld and A. C. Kak. Digital Picture Processing. Academic Press, New-York, 1976.

    Google Scholar 

  49. A. Rosenfeld and R. Klette. Degree of Adjacency or Surroundness. Pattern Recognition, 18 (2): 169–177, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

    MATH  Google Scholar 

  51. J. Serra. Image Analysis and Mathematical Morphology, Part II: Theoretical Advances. Academic Press (J. Serra Ed. ), London, 1988.

    Google Scholar 

  52. D. Sinha and E. Dougherty. Fuzzy Mathematical Morphology. Journal of Visual Communication and Image Representation, 3 (3): 286–302, 1992.

    Article  Google Scholar 

  53. J. K. Udupa and S. Samarasekera. Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. Graphical Models and Image Processing, 58 (3): 246–261, 1996.

    Article  Google Scholar 

  54. A. Varzi. Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology. Data and Knowledge Engineering, 20 (3): 259–286, 1996.

    Article  Google Scholar 

  55. L. Vieu. Spatial Representation and Reasoning in Artificial Intelligence. In O. Stock, editor, Spatial and Temporal Reasoning, pages 5–41. Kluwer, 1997.

    Google Scholar 

  56. L. A. Zadeh. Fuzzy Sets. Information and Control, 8: 338–353, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  57. L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences, 8: 199–249, 1975.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Bloch, I. (2002). Mathematical Morphology and Spatial Relationships: Quantitative, Semi-Quantitative and Symbolic Settings. In: Matsakis, P., Sztandera, L.M. (eds) Applying Soft Computing in Defining Spatial Relations. Studies in Fuzziness and Soft Computing, vol 106. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1752-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1752-2_4

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00294-0

  • Online ISBN: 978-3-7908-1752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics