Operator related to a data matrix: a survey

  • Yves Escoufier


The reading of this article will allow the readers to understand the data analysis approach which is proposed. The first paragraph gives the basic tools: the triplet (X, Q, D), the operator related to a data matrix and the coefficient RV. The two following paragraphs show how these tools are used for reading out and solving the problems of joint analysis of several data matrices and of principal component analysis with respect to instrumental variables. The conclusion recalls of the construction of this approach along the past thirty five years.


Principal Component Analysis Correspondence Analysis Data Matrix Instrumental Variable Data Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Beh97]
    Beh E.J (1997) Simple correspondence analysis of ordinal cross-clasifications using orthogonal polynolials. Biometrical Journal 39, 589–613MATHCrossRefGoogle Scholar
  2. [BEG84]
    Bonifas L, Escoufier Y, Gonzalez P.L, Sabatier R (1984) Choix de variables en analyse en composantes principales. Rev. Statistique Appliquée XXXII(2) 5–15MathSciNetGoogle Scholar
  3. [CP76]
    Caillez F, Pages J.P (1976) Introduction á l’analyse des données SMASH, ParisGoogle Scholar
  4. [CDT04]
    Chessel D, Dufour A.B, Thioulouse J (2004) The ade4 package — I: One-table methods. R News 4: 5–10Google Scholar
  5. [CD89]
    Cléroux R, Ducharme G (1989) Vector correlation for elliptical distribution. Comm. Stat. A, 18, 1441–1454.MATHGoogle Scholar
  6. [CLL95]
    Cléroux R, Lazraq A, Lepage Y (1995) Vector correlation based on ranks and a nonparametric test of no association between vectors. Communications in Stat., 24, 713–733.MATHCrossRefGoogle Scholar
  7. [DBA05]
    D’Ambra L, Beh E.J, Amenta P (2005) Catanova for two — way contingency tables with ordinal variables using orthogonal polynomials. Communications in statistics, theory and methods, 34, 1755–1770.MATHCrossRefMathSciNetGoogle Scholar
  8. [Dur92]
    Durand J.F (1992) Additive spline discriminant analysis. In: Y. Dodge and J.C. Whittakers (eds) Computational Statistics, Heidelberg: Physica — Verlag, I, 145–150.Google Scholar
  9. [Dur93]
    Durand J.F (1993) Generalized principal component analysis with respect to instrumental variables via univariate spline transformations. Computational Statistics and Data Analysis, 16, 423–440.MATHCrossRefMathSciNetGoogle Scholar
  10. [Esc70]
    Escoufier Y (1970) Echantillonnage dans une population de variables aléatoires réelles. Publl. Inst.Statist. Univ. Paris 19,4, 1–47.MathSciNetGoogle Scholar
  11. [Esc73]
    Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29, 751–760.CrossRefMathSciNetGoogle Scholar
  12. [Esc77]
    Escoufier Y (1977) Operators related to a data matrix. In: J.R. Barra (ed) Recents developpements in Statistics: North — Holland Publishing Company, 125–131.Google Scholar
  13. [Esc80]
    Escoufier Y (1980) Exploratory data analysis when data are matrices. In: K. Matusita (ed) Recent developments in Statistical inference and data analysis: North — Holland Publishing CompanyGoogle Scholar
  14. [Esc86]
    Escoufier Y (1986) A propos du choix de variables en analyse des données. Metron XLIV, 31–47.MathSciNetGoogle Scholar
  15. [Esc87]
    Escoufier Y (1987) The duality diagramm: a means of better practical applications. In: Legendre P. and Legendre L (eds) Development in numerical ecology, Nato ASI series, Vol.G14, Springer — Verlag, Berlin Heidelberg, 139–156.Google Scholar
  16. [EL78]
    Escoufier Y, L’Hermier H (1978) A propos de la comparaison graphique des matrices de variance. Biom.J. vol.20, 477–483.MATHCrossRefGoogle Scholar
  17. [ER79]
    Escoufier Y, Robert P (1979) Choosing variables and metrics by optimizing the RV — coefficient. In: Optimizing methods in Statistics: Academic Press, Inc.Google Scholar
  18. [ERC74]
    Escoufier Y, Robert P, Cambon J (1974) Construction of a vector equivalent to a given vector from the point of view of the analysis of principal components: Compstat, Vienne.Google Scholar
  19. [FER93]
    Fraile L, Escoufier Y, Raibaut A (1993) Analyse des correspondances de données planifiées: étude de la chémotaxie de la larve infestante d’un parasite. Biometrics 49, 1142–1153.CrossRefGoogle Scholar
  20. [Hol06]
    Holmes S (2006) Multivariate Statistics: The French Way In: D. Nolan and T. Speed (eds) Festschrift for David Freedman, IMS Lectures Notes — Monograph Series, Ohio. To appear.Google Scholar
  21. [IAE98]
    Iman W, Abdelkbir S, Escoufier Y (1998) Quantification des effets spatiaux linéaires et non linéaires dans l’explication d’un tableau de données concernant la qualité des eaux souterraines. Rev. Statistique Appliquée, XLVI(3) 37–52.Google Scholar
  22. [Lav88]
    Lavit Ch (1988) Analyse conjointe des tableaux quantitatifs: Masson, ParisGoogle Scholar
  23. [LES94]
    Lavit Ch, Escoufier Y, Sabatier R, Traissac P (1994) The ACT ( STATIS method). Computational Statistics & Data Analysis 18, 97–119.MATHCrossRefMathSciNetGoogle Scholar
  24. [KHS95]
    Kazi-Aoual F, Hitier S, Sabatier R, Lebreton J.D (1995) Refined approximations to permutation tests for multivariate inference. Computational Statistics & Data Analysis 20, 643–656.MATHCrossRefMathSciNetGoogle Scholar
  25. [Rao65]
    Rao C.R (1965) The use and interpretation of principal component analysis in applied research. Sankhya A 26, 329–358Google Scholar
  26. [RE76]
    Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV — coefficient. Appl.Statist. 25, 257–265CrossRefMathSciNetGoogle Scholar
  27. [SV04]
    Sabatier R, Vivien M (2004) A new linear method for analyzing four — way multibloks tables: STATIS — 4 submitted to Computational Statistics & Data analysisGoogle Scholar
  28. [SJE]
    Sabatier R, Jan Y, Escoufier Y (1984) Approximations d’applications linéaires et analyse en composantes principales In: E. Diday et al.(eds) Data Analysis and informatics III. Elsevier Science Publishers B.V. (North-Holland)Google Scholar
  29. [Sch96]
    Schlich P (1996) Defining and validating assessor compromises about product distances and attributes correlations. In: Naes T. and Risvik E (eds) Multivariate analysis of data in sensory science. Elesevier Science B.V.Google Scholar
  30. [Sch89]
    Schlich P, Guichard E (1989) Selection and classification of volatile compounds of abricot using the RV coefficient. Journal of Agricultural and Food Chemistry, 37, 142–150CrossRefGoogle Scholar
  31. [VS04]
    Vivien M, Sabatier R (2004) A generalization of STATIS — ACT strategy: Do ACT for multiblocks tables. Computational Statistics & data Analysis 46, 155–171CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2006

Authors and Affiliations

  • Yves Escoufier
    • 1
  1. 1.Equipe de Probabilités et Statistique, Département des Sciences mathématiquesUniversité de Montpellier IIMontpellier cedex 5France

Personalised recommendations