Advertisement

Tying up the loose ends in simple, multiple, joint correspondence analysis

  • Michael Greenacre

Keywords

Correspondence Analysis Multiple Correspondence Analysis Total Inertia International Social Survey Program Multiple Factor Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ada04]
    Adachi, K. (2004) Oblique Promax rotation applied to the solutions in multiple correspondence analysis. Behaviormetrika 31: 1–12.MATHCrossRefMathSciNetGoogle Scholar
  2. [AG02]
    Aitchison, J. & Greenacre, M.J. (2002) Biplots of compositional data. Applied Statistics 51: 375–392.MATHMathSciNetGoogle Scholar
  3. [Ben73]
    Benzécri, J.-P. (1973) L’Analyse des Données. Tôme I: l’Analyse des Correspondances. Dunod, Paris.MATHGoogle Scholar
  4. [Ben79]
    Benzécri, J.-P. (1979) Sur le calcul des taux d’inertie dans l’analyse d’un questionnaire. Cahiers de l’Analyse des Données 3: 55–71.Google Scholar
  5. [Gab71]
    Gabriel, K.R. (1971). The biplot-graphical display with applications to principal component analysis. Biometrika 58: 453–467.MATHCrossRefMathSciNetGoogle Scholar
  6. [Gab02]
    Gabriel, K.R. (2002). Goodness of fit of biplots and correspondence analysis. Biometrika 89, 423–436.MATHCrossRefMathSciNetGoogle Scholar
  7. [GO90]
    Gabriel, K.R. and Odoroff, C.L. (1990). Biplots in biomedical research. Statistics in Medicine 9: 423–436.CrossRefGoogle Scholar
  8. [Gif90]
    Gifi, A. (1990). Nonlinear Multivariate Analysis. Wiley, Chichester, UK.MATHGoogle Scholar
  9. [GH86]
    Gilula, Z. and Haberman, S. J. (1986). Canonical analysis of contingency tables by maximum likelihood. Journal of the American Statistical Association 81: 780–788.MATHCrossRefMathSciNetGoogle Scholar
  10. [GH96]
    Gower, J.C. and Hand, D.J. (1996). Biplots. Chapman and Hall, London.MATHGoogle Scholar
  11. [Gow06]
    Gower, J.C. (2006). Divided by a common language: analysing and visualizing two-way arrays. In M.J. Greenacre and J. Blasius (eds), Multiple Correspondence Analysis and Related Methods. Chapman and Hall, London, forthcoming.Google Scholar
  12. [Gre84]
    Greenacre, M.J. (1984). Theory and Applications of Correspondence Analysis. Academic Press, London.MATHGoogle Scholar
  13. [Gre88]
    Greenacre, M.J. (1988). Correspondence analysis of multivariate categorical data by weighted least-squares. Biometrika 75: 457–467.MATHCrossRefMathSciNetGoogle Scholar
  14. [Gre93a]
    Greenacre, M.J. (1993a) Correspondence Analysis in Practice. Academic Press, London.Google Scholar
  15. [Gre93b]
    Greenacre, M.J. (1993b). Biplots in correspondence analysis. Journal of Applied Statistics 20: 251–269.CrossRefGoogle Scholar
  16. [Gre93c]
    Greenacre, M.J. (1993c). Multivariate generalizations of correspondence analysis. In C.M. Cuadras and C.R. Rao (eds), Multivariate Analysis: Future Directions 2, North Holland, Amsterdam, pp.327–340.Google Scholar
  17. [Gre98]
    Greenacre, M.J. (1998). Diagnostics for joint displays in correspondence analysis. In J Blasius and M.J. Greenacre (eds), Visualization of Categorical Data. Academic Press, San Diego, pp. 221–238.Google Scholar
  18. [Gre06a]
    Greenacre, M.J. (2006a). Tying up the loose ends in simple correspondence analysis. Working Paper no. 940, Departament d’Economia i Empresa, Universitat Pompeu Fabra, Barcelona.Google Scholar
  19. [Gre06b]
    Greenacre, M.J. (2006b). From simple to multiple correspondence analysis. In M.J. Greenacre and J. Blasius (eds), Multiple Correspondence Analysis and Related Methods. Chapman and Hall, London, forthcoming.Google Scholar
  20. [GB06]
    Greenacre, M.J. and Blasius, J. (2006) (eds) Multiple Correspondence Analysis and Related Methods. Chapman and Hall, London, forthcoming.MATHGoogle Scholar
  21. [GL05]
    Greenacre, M.J. and Lewi, P.J. (2005) Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data. Working Paper no. 908, Departament d’Economia i Empresa, Universitat Pompeu Fabra, Barcelona.Google Scholar
  22. [GP06]
    Greenacre, M.J. and Pardo, R. (2006). Subset correspondence analysis: visualizing relationships among a set of response categories from a questionnaire survey.. Sociological Methods and Research, forthcoming.Google Scholar
  23. [Hil74]
    Hill, M.O. (1974) Correspondence analysis: a neglected multivariate method. Applied Statistics 23: 340–354.CrossRefGoogle Scholar
  24. [ISS94]
    ISSP (1994). International Social Survey Program: Family and Changing Gender Roles II. Central Archive for Empirical Social Research, Cologne, Germany.Google Scholar
  25. [Leb76]
    Lebart L. (1976). The significance of eigenvalues issued from correspondence analysis. In J. Gordesch and P. Naeve (eds), Proceedings in Computational Statistics, Physica Verlag, Vienna, pp. 38–45.Google Scholar
  26. [Leb06]
    Lebart, L. (2006). Validation techniques in multiple correspondence analysis. In M.J. Greenacre and J. Blasius (eds), Multiple Correspondence Analysis and Related Methods. Chapman and Hall, London, forthcoming.Google Scholar
  27. [Leg01]
    Legendre, P. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280CrossRefGoogle Scholar
  28. [Meu82]
    Meulman, J. (1982). Homogeneity Analysis of Incomplete Data. DSWO Press, Leiden, The Netherlands.Google Scholar
  29. [NG05]
    Nenadiæ, O. and Greenacre, M.J. (2005) The computation of multiple correspondence analysis, with code in R. Working Paper no. 887, Departament d’Economia I Empresa, Universitat Pompeu Fabra, Barcelona.Google Scholar
  30. [PB06]
    Pagès, J. and Bécue-Bertaut, M. (2006). Multiple factor analysis for contingency tables. In M.J. Greenacre and J. Blasius (eds), Multiple Correspondence Analysis and Related Methods. Chapman and Hall, London, forthcoming.Google Scholar
  31. [RDC05]
    R Development Core Team (2005). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.orgGoogle Scholar
  32. [Rao95]
    Rao. C.R. (1995). A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19: 23–63.Google Scholar
  33. [ST80]
    Silverman, B.W. and Titterington, D.M. (1980). Minimum covering ellipses. SIAM J. Sci. Stat. Comput. 1: 401–409.MATHCrossRefMathSciNetGoogle Scholar
  34. [SR81]
    Sokal, R. R. and Rohlf, F.J. (1981). Biometry: The Principles and Practice of Statistics in Biological Research. 2 nd Edition. W.H. Freeman & Co, New York.MATHGoogle Scholar
  35. [Van03]
    Van de Velden, M. (2003). Some Topics in Correspondence Analysis. PhD Thesis, University of AmsterdamGoogle Scholar
  36. [Ver05]
    Vermunt, J.K. and Anderson, C.J. (2005). Joint correspondence analysiebibliogs by maximum likelihood. Methodology 1: 18–26.Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2006

Authors and Affiliations

  • Michael Greenacre
    • 1
  1. 1.Departament d’Economia i EmpresaUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations