Skip to main content

Modelling Gravitational Instabilities: Slab Break-off and Rayleigh-Taylor Diapirism

  • Chapter
  • First Online:
Earth Sciences and Mathematics

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 517 Accesses

Abstract

A non-standard new code to solve multiphase viscous thermo-mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh-Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break-off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine-spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babeyko, A. Y., Sobolev, S. V., Trumbull, R. B., Oncken, O., and Lavier, L. L., (2002), Numerical models of crustal scale convection and partial melting beneath the Altiplano-Puna plateau, Earth Planet. Sci. Lett. 199, 373–388.

    Article  Google Scholar 

  • Belytschko, T., and Black, T., (1999), Elastic crack growth infinite elements with minimal remeshing, Internat. J. Numer. Methods in Eng. 45(5), 601–620.

    Article  Google Scholar 

  • VON Blanckenburg, F., AND Davies, J. H., (1995), Slab break off: A model for syncollisional magmatism and tectonics in the Alps, Tectonics 14, 120–131.

    Article  Google Scholar 

  • Chessa, J., AND Belytschko, T., (2003), An extended finite element method for two-phase fluids, Transact. ASME, 10–17.

    Google Scholar 

  • Chopp, D. L., (1993), Computing minimal surfaces via level set curvature flow, J. Comput. Phys. 106, 77–91.

    Article  Google Scholar 

  • Clauser, C., AND Huenges, E., Thermal conductivity of rocks and minerals. In T. Ahren, editor, Rock Physics and Phase Relations, AGU Reference Shelf, part 3, pages 105–126. (AGU, Washington DC 1995), third edition.

    Google Scholar 

  • Davies, J. H., AND VON Blanckenburg, F., (1995), Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens, Earth Planet. Sci. Lett. 129, 85–102.

    Article  Google Scholar 

  • Donea, J., AND Huerta, A., Finite Element Methods for Flow Problems, (Wiley, Chichester, West Sussex PO19 8SQ, England, 2002).

    Google Scholar 

  • Gerya T. V., and Yuen, D. A., (2003), Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties, Phys. Earth Planet. Inter. 140(4), 293–318.

    Article  Google Scholar 

  • Gerya, T. V., Yuen, D. A., and Maresch, W. V., (2004), Thermomechanical modelling of slab detachment, Earth Planet. Sci. Lett. 226, 101–116.

    Article  Google Scholar 

  • Gómez, P., Hernández, J., and López, J., (2005), On the reinitialization procedure in a narrow-band locally refined level set method for interfacial flows, Int. J. Numer. Meth. Eng. 63, 1478–1512.

    Article  Google Scholar 

  • Gorczyk, W., Gerya, T. V., Connolly, J. A. D., Yuen, D. A., and Rudolph, M., (2006), Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography, Geochem. Geophys. Geosyst. 7(5). doi:10.1029/2005GC001075.

    Google Scholar 

  • Hofmeister, A. M., (1999), Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science 283, 1969–1706.

    Article  Google Scholar 

  • Isacks, B., and Molnar, P., (1969), Mantle earthquake mechanisms and the sinking of the lithosphere, Nature 223, 1121–1124.

    Article  Google Scholar 

  • Karato, S.-I., and Wu, P., (1993), Rheology of the upper mantle: a synthesis, Rev. Science 260, 771–778.

    Google Scholar 

  • King, S. D., Raefsky, A., and Hager, B. H., (1990), ConMan: vectorizing a finite element code for incompressible two-dimensional convection in the Earth’s mantle, Phys. Earth Planet. Inter. 59, 195–207.

    Article  Google Scholar 

  • Manea, V. C., Manea, M., Kostoglodov, V., and Sewell, G., (2006), Intraslab seismicity and thermal stress in the subducted Cocos plate beneath central Mexico, Tectonophysics 420(3-4), 389–408.

    Article  Google Scholar 

  • Moês, N., Cloirec, M., Cartaud, P., and Remacle, J. F., (2003), A computational approach to handle complex microstructure geometries, Computer Methods in Appl. Mech. and Engin. 192, 3163–3177.

    Article  Google Scholar 

  • Molinaro, M., Zeyen, H., and Laurencin, X., (2005), Lithospheric structure beneath the south-eastern Zagros mountains, Iran: Recent slab break-off? Terra Nova 17, 1–6.

    Article  Google Scholar 

  • Moresi, L. N., and Gurnis, M., (1996), Constraints on lateral strength of slabs from 3-D dynamic flow models, Earth Planet. Sci. Lett. 138, 15–28.

    Article  Google Scholar 

  • Poliakov, A. N. B., VAN Balen, R., Podladchikov, YU., Daudre, B., Cloetingh, S., AND Talbot, C., (1993),Numerical analysis of how sedimentation and redistribution of surficial sediments affects salt diapirism, Tectonophysics 226, 199–216.

    Article  Google Scholar 

  • Ranalli, G., Rheology of the Earth (Chapman and Hall, 2-6 Boundary Row, London, second edition, 1995).

    Google Scholar 

  • Schott, B., and Schmeling, H., (1998), Delamination and detachment of a lithospheric root, Tectonophys. 296, 225–247.

    Article  Google Scholar 

  • Schubert, G., Turcotte, D. L., AND Olson, P., Mantle Convection in Earth and Planets (Cambridge University Press, UK, 2001).

    Google Scholar 

  • Scott, D. K., Raefsky, A., and Hager, B. H., (1990), ConMan: A vectorizing a finite element code for incompressible two-dimensional convection in the Earth’s mantle, Phys. Earth Planet. Inter. 59, 195–2007.

    Article  Google Scholar 

  • Spakman, W., Upper mantle delay time tomography with an application to the collision zone of Eurasian, African and Arabian plates. PhD thesis (Univ. of Utrech, Utrech, The Netherlands, 1988).

    Google Scholar 

  • Stolarska, M., Chopp, D. L., Moës, N., and Belytschko, T., (2001), Modelling crack growth by level set in the extended finite element method, Internat. J. for Numer. Methods in Engin. 51, 943–960.

    Article  Google Scholar 

  • Sukumar, N., Chopp, D. L., Moës, N., and Belytschko, T., (2001), Modeling Holes and Inclusions by Level Sets in the Extended Finite-Element Method, Computer Methods in Appl. Mech. and Engin. 190, 6183–6200.

    Article  Google Scholar 

  • Sussman, M., Smereka, P., and Osher, S., (1994), A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114, 146–159.

    Article  Google Scholar 

  • van Hunen, J., VAN den berg, A. P., AND Vlarr, N. J., (2004), Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study, Phys. Earth Planet. Inter. 146, 179–194.

    Article  Google Scholar 

  • VAN Keken, P. E., King, S. D., Schmeling, H., Christensen, U. R., Numeister, D., and Doin, M.-P., (1997), A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res. 102(B10), 22477–22495.

    Article  Google Scholar 

  • Whitehead, J. A., Jr. AND Luther, D. S., (1975), Dynamics of laboratory diapir and plume models, J. Geophys. Res. 80, 705–717.

    Article  Google Scholar 

  • Wortel, M. J. R., and Spakman, W., (2000), Subduction and slab detachment in the Mediterranean-Carpathian region, Science 290, 1910–1917.

    Article  Google Scholar 

  • Xu, P. F., Sun, R. M., Liu, F. T., Wang, Q., and Cong, B., (2000), Seismic tomography showing, subduction and slab breakoff of the Yangtze block beneath the Dabie—Sulu orogenic belt, Chin. Sci. Bull 45, 70–74.

    Article  Google Scholar 

  • Yoshioka, S., and Wortel, M. J. R., (1995), Three-dimensional numerical modeling of detachment of subducted lithosphere, J. Geophys. Res. 100(B10), 20223–20244.

    Article  Google Scholar 

  • Zaleski, S., and Julien P. (1992), Numerical simulation of Rayleigh-Taylor instability for single and multiple salt diapirs, Tectonophys. 260, 55–69.

    Article  Google Scholar 

  • Zlotnik, S., Díez, P., Fernández, M., and Vergés, J., (2007), Numerical modelling of tectonic plates subduction using X-FEM, Computer Methods in Appl. Mech. and Engin. 196, 4283–4293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Zlotnik, S., Fernández, M., Díez, P., Vergés, J. (2008). Modelling Gravitational Instabilities: Slab Break-off and Rayleigh-Taylor Diapirism. In: Camacho, A.G., Díaz, J.I., Fernändez, J. (eds) Earth Sciences and Mathematics. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9964-1_3

Download citation

Publish with us

Policies and ethics