Skip to main content

Apatite fission track and (U-Th)/He thermochronology of the Rochovce granite (Slovakia) — implications for the thermal evolution of the Western Carpathian-Pannonian region

  • Conference paper
  • First Online:
Orogenic Processes in the Alpine Collision Zone

Part of the book series: Swiss Journal of Geosciences Supplement ((SWISSGEO,volume 3))

  • 1020 Accesses

Abstract

The thermal evolution of the only known Alpine (Cretaceous) granite in the Western Carpathians (Rochovce granite) is studied by low-temperature thermochronological methods. Our apatite fission track and apatite (U-Th)/He ages range from 17.5±1.1 to 12.9±0.9 Ma, and 12.9±1.8 to 11.3±0.8 Ma, respectively. The data thus show that the Rochovce granite records a thermal event in the Middle to early Late Miocene, which was likely related to mantle upwelling, volcanic activity, and increased heat flow. During the thermal maximum between ∼17 and 8 Ma, the granite was heated to temperatures ≳60°C. Increase of cooling rates at ∼12 Ma recorded by the apatic fission track and (U-Th)/He data is primarily related to the cessation of the heating event and relaxation of the isotherms associated with the termination of the Neogene volcanic activity. This contradicts the accepted concept, which stipulates that the internal parts of the Western Carpathians were not thermally affected during the Cenozoic period. The Miocene thermal event was not restricted to the investigated part of the Western Carpathians, but had regional character and affected several basement are as in the Western Carpathians, the Pannonian basin and the margin of the Eastern Alps.

Editorial Handling: Stefan Schmid & Stefan Bucher

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrusov, D. 1968: Grundriss der Tektonik der nördlichen Karpaten. Verlag der Slowakischen Akademie der Wissenschaften, Bratislava, 188 pp.

    Google Scholar 

  • Bibikova, E.V., Cambel, B., Korikovsky, S.P., Broska, I., Gracheva, T.V., Makarov, V.A. & Arakeliants, M.M. 1988: U−Pb and K−Ar isotopic dating of Sinec (Rimavica granites Kohút zone of Veporides). Geologický Zborník-Geologica Carpathica 39, 147–157.

    Google Scholar 

  • Cambel, B., Král, J. & Burchart, J. 1990: Isotope geochronology of the Western Carpathians crystalline complex (in Czech). Veda, SAV Bratislava, 183 pp.

    Google Scholar 

  • Csontos, L. 1995: Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanologica 7, 1–13.

    Google Scholar 

  • Dallmeyer, R.D., Neubauer, F., Handler, R., Fritz, H., Müller, W., Pana, D. & Putiš, M. 1996: Tectonothermal evolution of the Internal Alps and Carpathians: evidence from 40Ar/39Ar mineral and whole-rock data. Ecologae Geologiae Helyetia 89(1), 203–227.

    Google Scholar 

  • Danišík, M. 2005: Cooling history and relief evolution of Corsica (France) as constrained by fission track and (U-Th)/He thermochronology. Tübinger Geowissenschaftliche Arbeiten, Reihe A, 72, Tübingen, Germany, 130 pp.

    Google Scholar 

  • Danišík, M., Dunkl, I., Putiš, M., Frisch, W. & Kráf, J. 2004: Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian Basin — an apatite fission track study. Austrian Journal of Earth Sciences 95/96, 60–70.

    Google Scholar 

  • Danišík, M., Dunkl, I., Kadlec, J. & Frisch, W. 2005: Cooling history of Tatric crystalline basement of Nízke Tatry Mts. (Western Carpathians) inferred from apatite fission track and (U-Th)/He analysis — preliminary results. Geolines 19, 31–32.

    Google Scholar 

  • Danišík, M., Dunkl, I. & Frisch, W. 2006: Cooling history of some crystalline basement rocks from the transitional zone between Alps, Carpathians and Pannonian basin, assessed by apatite fission track thermochronology. EGU Vienna 2006, Geophysical Research Abstracts 8, 07420.

    Google Scholar 

  • Danišík, M., Kohút, M., Dunkl, I. & Frisch, W. 2008: Thermal evolution of the Žiar Mts basement (Inner Western Carpathians Slovakia) constrained by fission track data. Geologica Carpathica 59/1, 19–30.

    Google Scholar 

  • Donelick, R.A., Ketcham, R.A. & Carlson, W.D. 1999: Variability of apatite fission-track annealing kinetics: I. Experimental results. American Mineralogist 84, 1224–1234.

    Google Scholar 

  • Dövényi, P. & Horváth, F. 1988: A review of temperature, thermal conductivity, and heat flow data from the Pannonian Basin. In: Royden, L.H. & Horváth, F. (Eds.). The Pannonian Basin. A study in basin evolution. AAPG Memoir 45, 195–233.

    Google Scholar 

  • Dunkl, I. & Frisch, W. 2002: Thermochronologic constraints on the Late Cenozoic exhumation along the Alpine and West Carpathian margins of the Pannonian basin. In: Cloething, S.A. P.L., Horváth, F., Bada, G. & Lankreijer, A.C. (Eds.). Neotectonics and surface processes: the Pannonian Basin and Alpine/Carpathian System. EGU Stephan Mueller Special Publication Series 3, 135–147.

    Google Scholar 

  • Ebner, F. & Sachsenhofer, R.F. 1991: Paleogeography, subsidence and thermal history of the Neogene Styrian basin (Pannonian basin system, Austria). Tectonophysics 242, 133–150.

    Article  Google Scholar 

  • Farley, K.A., 2000. Helium diffusion from apatite: General behaviour as illustrated by Durango fluorapatite. Journal of Geophysical Research 105(B2), 2903–2914.

    Article  Google Scholar 

  • Farley, K.A., Wolf, R.A. & Silver, L.T. 1996: The effect of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta 60(21), 4223–4229.

    Article  Google Scholar 

  • Filo, M., Obernauer, D. & Stránska, M. 1974: Geophysical research of the Tatroveporic crystalline basement — the Král’ová hol’a and Kohút areas (in Slovak). Open file report, Geofond Bratislava.

    Google Scholar 

  • Fodor, L.I., Gerdes, A., Dunkl, I., Koroknai, B., Pécskay, Z., Trajanova, M., Horváth, P., Vrabec, M., Balogh, K., Jelen, B. & Frisch, W. 2008. Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Panonian-Dinaric junction: a geochronological and structural study. Swiss Journal of Geosciences, doi: 10.1007/s00015-008-1286-9.

    Google Scholar 

  • Frisch, W., Kuhlemann, J., Dunkl, I. & Brügel, A. 1998: Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary extrusion. Tectonophysics 297, 1–15.

    Article  Google Scholar 

  • Frisch, W., Dunkl, I. & Kuhlemann, J. 2000: Postcollisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics 327, 239–265.

    Article  Google Scholar 

  • Galbraith, R.F. & Laslett, G.M. 1993: Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21, 459–470.

    Article  Google Scholar 

  • Gleadow, A.J.W. 1981: Fission-track dating methods: what are the real alternatives. Nuclear Tracks and Radiation Measurements 5(1/2), 3–14.

    Article  Google Scholar 

  • Gleadow, A.J.W., Duddy, I.R. & Green, P.F. 1986a: Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters 78, 245–254.

    Article  Google Scholar 

  • Gleadow, A.J.W., Duddy, I.R. & Green, P.F. 1986b: Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology 94, 405–415.

    Article  Google Scholar 

  • Határ J., Hraško L’. & Václav J. 1989: Hidden granite intrusion near Rochovce with Mo-(W) stockwork mineralization (First object of its kind in the West Carpathians). Geologický Zborník — Geologica Carpathica 5, 621–654.

    Google Scholar 

  • Horváth, F., Dövényi, P., Szalay, Á. & Royden, L.H. 1988: Subsidence, thermal and maturation history of the Great Hungarian Plain. In: Royden, L.H. & Horváth, F. (Eds.): The Pannonian Basin, a Study in Basin Evolution. AAPG Memoir 45, 355–372.

    Google Scholar 

  • Hovorka, D. & Méres, Š. 1997: Alpine metamorphism in the Western Carpathians (with special attention on pre-Carbon iferous somplexes). In: Grecula, P., Hovorka, D. & Putiš, M. (Eds.): Geological evolution of the Western Carpathians. Mineralia Slovaca — Monograph, Bratislava, 79–88.

    Google Scholar 

  • Hraško, L’., Kotov, A.B., Salnikova, E.B. & Kovach, V.P. 1998: Enclaves in the Rochovce Granite intrusion as indicators of the temperature and origin of the magma. Geologica Carpathica 49, 125–138.

    Google Scholar 

  • Hraško, L’., Határ, J., Huhma, H., Mäntäri, I., Michalko, J. & Vaasjoki, M. 1999: U/Pb zircon dating of the Upper Cretaceous granite (Rochovce type) in the Western Carpathians. Krystalinikum 25, 163–171.

    Google Scholar 

  • Hurai, V., Dávidová, Š. & Kantor, J. 1991: Adularia from Alpine fissures of the Veporic crystalline complexes: morphology, physical and chemical properties, fluid inclusions and K-Ar dating. Mineralia Slovaca 23, 133–144.

    Google Scholar 

  • Hurford, A.J. & Green, P.F. 1983: The zeta age calibration of fission-track dating. Chemical Geology 41, 285–312.

    Article  Google Scholar 

  • Janák, M., Plašienka, D., Frey, M., Cosca, M., Schmidt, S., Lupták, B. & Méres, Š. 2001: Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Sovakia): P-T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. Journal of Metamorphic Geology 19, 197–216.

    Article  Google Scholar 

  • Kázmér, M., Dunkl, I., Frisch, W., Kuhlemann, J. & Ozsvárt, P. 2003: The Palaeogene forearc basin of the Eastern Alps and the Western Carpathians: subduction erosion and basin evolution. Journal of the Geological Society 160, 413–428.

    Article  Google Scholar 

  • Ketcham, R.A. 2005: Forward and inverse modelling of low-temperature thermochronometry data. In: Reiners, P.W. & Ehlers, T.A. (Eds.): Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Reviews in Mineralogy and Geochemistry 58, 275–314.

    Google Scholar 

  • Ketcham, R.A., Donelick, R.A. & Carlson, W.D. 1999: Variability of apatite fission-track annealing kinetics: III. Extrapolation to geologic time scales. American Mineralogist 84, 1235–1255.

    Google Scholar 

  • Klinec, A., Macek, J., Dávidová, Š. & Kamenický, L. 1980: Rochovce granite in the contact zone between the Veporicum and Gemericum Units (in Slovak). Geologické Práce, Správy 74, 103–112.

    Google Scholar 

  • Korikovsky, S.P., Putiš, M. & Plašienka, D. 1997: Cretaceous low-grade metamorphism of the Veporic and North-Gemeric Zones: a result of collisional tectonics in the central Western Carpathians. In: Grecula, P., Hovorka, D. & Putiš, M. (Eds.): Geological evolution of the Western Carpathians. Mineralia Slovaca — Monograph, Bratislava, 107–130.

    Google Scholar 

  • Kováč, M. 2000: Geodynamic, paleogeographic and structural development of the Carpatho-Pannonian region during the Miocene: new view on the Neogene basins of Slovakia (in Slovak). Veda, Bratislava, 204 pp.

    Google Scholar 

  • Kováč, M., Nagymarosy, A., Soták, J. & Šutovská, K. 1993: Late Tertiary paleogeographic evolution of the Western Carpathians. Tectonophysics 226, 401–416.

    Article  Google Scholar 

  • Kováč, M., Král’, J., Márton, E., Plašienka, D. & Uher, P. 1994: Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica 45, 83–96.

    Google Scholar 

  • Král’, J. 1977: Fission track ages of apatites from some granitoid rocks in West Carpathians. Geologický Zborník — Geologica Carpathica 28, 269–276.

    Google Scholar 

  • Kraus, I. 1989: Kaolins and Kaolinite Clays of the Western Carpathians (in Slovak with English summary). In: Západné Karpaty. Séria Mineralógia, Petrogrológia, Geochémia, Metalogenéza: GÚDŠ, Bratislava 287 pp.

    Google Scholar 

  • Lankreijer, A., Kováč, M., Cloetingh, S., Pitoňák, P., Hlôška, M. & Biermann, C. 1995: Quantitative subsidence analysis and forward modelling of the Vienna and Danube Basin. Tectonophysics 252, 433–451.

    Article  Google Scholar 

  • Lenkey, L., Dövényi, P., Horváth, F. & Cloetingh, S.A.P.L. 2002: Geothermics of the Pannonian basin and its bearing on the neotectonics. In: Cloetingh, S.A.P.L., Horváth, F., Bada, G. & Lankreier, A.C. (Eds.): Neotectonics and surface processes: the Pannonian Basin and Alpine/Carpathian System. EGU Stephan Mueller Special Publication Series 3, 29–40.

    Google Scholar 

  • Lexa, J. & Konečný, V. 1998: Geodynamic aspects of the Neogene to Quaternary volcanism. In: Rakús, M. (Ed.): Geodynamic development of the Western Carpathians. GSSR, Bratislava, 219–240.

    Google Scholar 

  • Lexa, J., Bezák, V., Elečko, M., Eliáš, M., Konečný, V., Less, Gy., Mandl, G.W., Mello, J., Pálenský, P., Pelikán, P., Polák, M., Potfaj, M., Radocz, Gy., Rylko, W., Schnabel, G.W., Stránik, Z., Vass, D., Vozár, J., Zelenka, T., Bilely, A., Császár, G., Čtyroký, P., Kaličiak, M., Kohút, M., Kovacs, S., Mackiv, B., Maglay, J., Nemčok, J., Nowotný, A., Pentelényi, L., Rakús, M. & Vozárová, A. 2000: Geological map of Western Carpathians and adjacent areas 1∶500 000. Ministry of the Environment of Slovak Republic Geological Survey of Slovak Republic, Bratislava.

    Google Scholar 

  • Lupták, B., Janák, M., Plašienka, D., Schmidt, S.T. & Frey, M. 2000: Chloritoid-kyanite schists from the Veporic unit, Western Carpathians, Slovakia: implications for Alpine (Cretaceous) metamorphism. Schweizerische Mineralogische und Petrographische Mitteilungen 80, 211–222.

    Google Scholar 

  • Marko, F. & Vojtko, R. 2006: Structural record and tectonic history of the Mýto-Tisovec fault (Central Western Carpathians). Geologica Carpathica 57/3, 211–221.

    Google Scholar 

  • Pécskay, Z., Lexa, J., Szakács, A., Seghedi, J., Balogh, K., Konečný, V., Zelenka, T., Kovacs, M., Póka, T., Fülöp, A., Márton, E., Panaiotu, C. & Cvetković, V. 2006: Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica 57/6, 511–530.

    Google Scholar 

  • Plašienka, D., Grecula, P., Putiš, M., Kováč, M. & Hovorka, D. 1997: Evolution and structure of the Western Carpathians: an overview. In: Grecula, P., Hovorka, D. & Putiš, M. (Eds.): Geological evolution of the Western Carpathians. Mineralia Slovaca — Monograph, Bratislava, 1–24.

    Google Scholar 

  • Plašienka, D., Janák, M., Lupták, B., Milovský, R. & Frey M. 1999: Kinematics and metamorphism of a Cretaceous core complex: the Veporic unit of the Western Carpathians. Physics and Chemistry of the Earth 24, 651–658.

    Article  Google Scholar 

  • Poller, U., Uher, P., Janák, M., Plašienka, D. & Kohút, M. 2001: Late Cretaceous age of the Rochovce granite, Western Carpathians, constrained by U-Pb single-zircon dating in combination with cathodoluminiscence imaging. Geologica Carpathica 52, 41–47.

    Google Scholar 

  • Ratschbacher, L., Behrmann, J.H. & Pahr, A. 1990: Penninic windows at the eastern end of the Alps and their relation to the intra-Carpathian basins. Tectonophysics 172, 91–105.

    Article  Google Scholar 

  • Ratschbacher, L., Frisch, W., Linzer, H.-G. & Merle, O., 1991: Lateral extrusion in the eastern Alps. 2. Structural analysis. Tectonics 10, 257–271.

    Article  Google Scholar 

  • Reinecker, J. 2000: Stress and deformation: Miocene to present-day tectonics in the Eastern Alps. Tübinger Geowissenschaftliche Arbeiten, Reihe A, 55, Tübingen, Germany, 128 pp.

    Google Scholar 

  • Repčok, I. 1981: Dating of Neogene volcanic rocks in Central Slovakia by the FT method (in Slovak with English summary). Západné Karpaty, Séria Mineralógia, Petrografia, Geochémia, Metalogenéza 8, 59–104.

    Google Scholar 

  • Royden, L.H., Horváth, F. & Burchfiel, B.C. 1982: Transform Faulting, Extension, and Subduction in the Carpathian Pannonian Region. GSA Bulletin 93, 717–725.

    Article  Google Scholar 

  • Royden, L.H., Horváth, F., Nagymarosy, A. & Stegena, F. 1983: Evolution of the Pannian Basin System. 2. Subsidence and thermal history. Tectonics 2, 91–137.

    Article  Google Scholar 

  • Sachsenhofer, R.F. 1994: Petroleum generation and migration in the Styrian Basin (Pannonian Basin system, Austria): an integrated geochemical and numerical modelling study. Marine and Petroleum Geology 11, 684–701.

    Article  Google Scholar 

  • Sperner, B., Ratschbacher, L. & Nemčok, M. 2002: Interplay between subduction retreat and lateral extrusion: Tectonics of the Western Carpathians. Tectonics 21, 1–24.

    Article  Google Scholar 

  • Stein, H., Kohút, M., Zimmerman, A. & Hraško, L’. (in review): Re-Os molybdenite dating of the Rochovce granite and its mineralization. Geologica Carpathica.

    Google Scholar 

  • Stüwe, K., White, L. & Brown, R. 1994: The influence of eroding topography on steady-state isotherms. Application to fission track analysis. Earth and Planetary Science Letters 124, 63–74.

    Article  Google Scholar 

  • Szabó, Cs., Harangi, S. & Csontos, L. 1992: Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region. Tectonophysics 208, 243–256.

    Article  Google Scholar 

  • Tari, G., Horváth, F. & Rumpler, J. 1992: Styles of extension in the Pannonian Basin. Tectonophysics 208, 203–219.

    Article  Google Scholar 

  • Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu, M., Szafián, P. & Tóth, T. 1999: Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand, B., Jolivet, L., Horváth, F. & Séranne, M. (Eds.): The Mediterranean Basins: Tertiary extension within the Alpine Orogen. Geological Society Special Publications 156, 215–250.

    Google Scholar 

  • Vass, D., Konečný, V. & Šefara, J. 1979: Geology of Ipel’ská kotlina depression and Krupinská Planina Mts. (in Slovak with English abstract). GÚDŠ, Bratislava, 227 pp.

    Google Scholar 

  • Vozárová, A. 1990: Development of metamorphism in the Gemeric/Veporic contact zone (Western Carpathians). Geologický Zborník — Geologica Carpathica 41, 475–502.

    Google Scholar 

  • Vrána, S. 1964: Chloritoid and kyanite zone of Alpine metamorphism on the boundary of the Gemerides and the Veporides (Slovakia). Krystalinikum 2, 125–143.

    Google Scholar 

  • Wortel, M.J.R. & Spakman, W. 2000: Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290, 1910–1917.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Danišík .

Editor information

Nikolaus Froitzheim Stefan M. Schmid

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this paper

Cite this paper

Danišík, M., Kohút, M., Dunkl, I., Hraško, L., Frisch, W. (2008). Apatite fission track and (U-Th)/He thermochronology of the Rochovce granite (Slovakia) — implications for the thermal evolution of the Western Carpathian-Pannonian region. In: Froitzheim, N., Schmid, S.M. (eds) Orogenic Processes in the Alpine Collision Zone. Swiss Journal of Geosciences Supplement, vol 3. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-9950-4_13

Download citation

Publish with us

Policies and ethics