Skip to main content

Robin-to-Robin Maps and Krein-Type Resolvent Formulas for Schrödinger Operators on Bounded Lipschitz Domains

  • Chapter
Modern Analysis and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 191))

Abstract

We study Robin-to-Robin maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains in ℝn, n ⩾ 2, with generalized Robin boundary conditions.

Based upon work partially supported by the US National Science Foundation under Grant Nos. DMS-0400639 and FRG-0456306.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space. Dover, New York, 1993.

    MATH  Google Scholar 

  2. S. Albeverio, J.F. Brasche, M.M. Malamud, and H. Neidhardt, Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions. J. Funct. Anal. 228 (2005), 144–188.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Albeverio, M. Dudkin, A. Konstantinov, and V. Koshmanenko, On the point spectrum of \( \mathcal{H}_{ - 2} \)-singular perturbations. Math. Nachr. 280 (2007), 20–27.

    Article  MATH  MathSciNet  Google Scholar 

  4. W.O. Amrein and D.B. Pearson, M operators: a generalization of Weyl-Titchmarsh theory. J Comp. Appl. Math. 171 (2004), 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Arendt and M. Warma, Dirichlet and Neumann boundary conditions: What is in between? J. Evolution Eq. 3 (2003), 119–135.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Arendt and M. Warma, The Laplacian with Robin boundary conditions on arbitrary domains. Potential Anal. 19 (2003), 341–363.

    Article  MATH  MathSciNet  Google Scholar 

  7. Yu.M. Arlinskii and E.R. Tsekanovskii, Some remarks on singular perturbations of self-adjoint operators. Meth. Funct. Anal. Top. 9 (2003), no. 4, 287–308.

    MATH  MathSciNet  Google Scholar 

  8. Yu. Arlinskii and E. Tsekanovskii, The von Neumann problem for nonnegative symmetric operators. Int. Eq. Operator Theory, 51 (2005), 319–356.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems. Num. Funct. Anal. Optimization 25 (2004), 321–348.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Auchmuty, Spectral characterization of the trace spaces Hs(∂Ω). SIAM J. Math. Anal. 38 (2006), 894–905.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Behrndt and M. Langer, Boundary value problems for partial differential operators on bounded domains. J. Funct. Anal. 243 (2007), 536–565.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Behrndt, M.M. Malamud, and H. Neidhardt, Scattering matrices and Weyl functions. Proc. London Math. Soc. (3) 97 (2008), 568–598.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Belyi, G. Menon, and E. Tsekanovskii, On Krein’s formula in the case of nondensely defined symmetric operators, J. Math. Anal. Appl. 264 (2001), 598–616.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Belyi and E. Tsekanovskii, On Krein’s formula in indefinite metric spaces. Lin. Algebra Appl. 389 (2004), 305–322.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Biegert and M. Warma, Removable singularities for a Sobolev space. J. Math. Anal. Appl. 313 (2006), 49–63.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.F. Brasche, M.M. Malamud, and H. Neidhardt, Weyl functions and singular continuous spectra of self-adjoint extensions. in Stochastic Processes, Physics and Geometry: New Interplays. II. A Volume in Honor of Sergio Albeverio, F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Röckner, and S. Scarlatti (eds.), Canadian Mathematical Society Conference Proceedings, Vol. 29, Amer. Math. Soc., Providence, RI, 2000, pp. 75–84.

    Google Scholar 

  17. J.F. Brasche, M.M. Malamud, and H. Neidhardt, Weyl function and spectral properties of self-adjoint extensions. Integral Eqs. Operator Theory 43 (2002), 264–289.

    Article  MATH  MathSciNet  Google Scholar 

  18. B.M. Brown, G. Grubb, and I.G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems. Math. Nachr. 282 (2009), 314–347.

    Article  MATH  MathSciNet  Google Scholar 

  19. B.M. Brown and M. Marletta, Spectral inclusion and spectral exactness for PDE’s on exterior domains. IMA J. Numer. Anal. 24 (2004), 21–43.

    Article  MATH  MathSciNet  Google Scholar 

  20. B.M. Brown, M. Marletta, S. Naboko, and I. Wood, Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices. J. London Math. Soc. (2) 77 (2008), 700–718.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20 (2008), 1–70.

    Article  MATH  MathSciNet  Google Scholar 

  22. E.N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions. J. Diff. Eq. 138 (1997), 86–132.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Daners, Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352 (2000), 4207–4236.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods. Springer, Berlin, 2000.

    MATH  Google Scholar 

  25. V.A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, Generalized resolvents of symmetric operators and admissibility. Meth. Funct. Anal. Top. 6 (2000), no. 3, 24–55.

    MATH  Google Scholar 

  26. V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and their Weyl families. Trans. Amer. Math. Soc. 358 (2006), 5351–5400.

    Article  MATH  MathSciNet  Google Scholar 

  27. V.A. Derkach and M.M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95 (1991), 1–95.

    Article  MATH  MathSciNet  Google Scholar 

  28. V.A. Derkach and M.M. Malamud, The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73 (1995), 141–242.

    Article  MATH  MathSciNet  Google Scholar 

  29. D.E. Edmunds and W.D. Evans, Spectral Theory and Differential Operators. Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  30. W.G. Faris, Self-Adjoint Operators. Lecture Notes in Mathematics. 433, Springer, Berlin, 1975.

    Google Scholar 

  31. F. Gesztesy, N.J. Kalton, K.A. Makarov, and E. Tsekanovskii, Some Applications of Operator-Valued Herglotz Functions. In Operator Theory, System Theory and Related Topics. The Moshe Livšic Anniversary Volume. D. Alpay and V. Vinnikov (eds.), Operator Theory: Advances and Applications, Vol. 123, Birkhäuser, Basel, 2001, p. 271–321.

    Google Scholar 

  32. F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications. Russ. J. Math. Phys. 12 (2005), 443–471.

    MATH  MathSciNet  Google Scholar 

  33. F. Gesztesy, K.A. Makarov, and E. Tsekanovskii, An addendum to Krein’s formula. J. Math. Anal. Appl. 222 (1998), 594–606.

    Article  MATH  MathSciNet  Google Scholar 

  34. F. Gesztesy and M.M. Malamud, Elliptic boundary value problems, operator-valued Weyl-Titchmarsh functions, and the associated extension theory. In preparation.

    Google Scholar 

  35. F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday, D. Mitrea and M. Mitrea (eds.), Proceedings of Symposia in Pure Mathematics, Vol. 79, American Mathematical Society, Providence, RI, 2008, pp. 105–173.

    Google Scholar 

  36. F. Gesztesy, M. Mitrea, and M. Zinchenko, Variations on a Theme of Jost and Pais. J. Funct. Anal. 253 (2007), 399–448.

    Article  MATH  MathSciNet  Google Scholar 

  37. V.I. Gorbachuk and M.L. Gorbachuk, Boundary Value Problems for Operator Differential Equations. Kluwer, Dordrecht, 1991.

    Google Scholar 

  38. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985.

    MATH  Google Scholar 

  39. G. Grubb, Distributions and Operators. Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.

    Google Scholar 

  40. D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995), 161–219.

    Article  MATH  MathSciNet  Google Scholar 

  41. W. Karwowski and S. Kondej, The Laplace operator, null set perturbations and boundary conditions. In Operator Methods in Ordinary and Partial Differential Equations. S. Albeverio, N. Elander, W.N. Everitt, and P. Kurasov (eds.), Operator Theory: Advances and Applications, Vol. 132, Birkhäuser, Basel, 2002, pp. 233–244.

    Google Scholar 

  42. T. Kato, Perturbation Theory for Linear Operators. Corr. printing of the 2nd ed., Springer, Berlin, 1980.

    MATH  Google Scholar 

  43. V. Koshmanenko, Singular operators as a parameter of self-adjoint extensions. in Operator Theory and Related Topics, V.M. Adamyan, I. Gohberg, M. Gorbachuk, V. Gorbachuk, M.A. Kaashoek, H. Langer, and G. Popov (eds.), Operator Theory: Advances and Applications, Vol. 118, Birkhäuser, Basel, 2000, pp. 205–223.

    Google Scholar 

  44. M.G. Krein, On Hermitian operators with deficiency indices one. Dokl. Akad. Nauk SSSR 43 (1944), 339–342. (Russian)

    MathSciNet  Google Scholar 

  45. M.G. Krein, Resolvents of a hermitian operator with defect index (m, m). Dokl. Akad. Nauk SSSR 52 (1946), 657–660. (Russian)

    MathSciNet  Google Scholar 

  46. M.G. Krein and I.E. Ovcharenko, Q-functions and sc-resolvents of nondensely defined hermitian contractions. Sib. Math. J. 18 (1977), 728–746.

    Google Scholar 

  47. M.G. Krein and I.E. Ovčarenko, Inverse problems for Q-functions and resolvent matrices of positive hermitian operators. Sov. Math. Dokl. 19 (1978), 1131–1134.

    Google Scholar 

  48. M.G. Krein, S.N. Saakjan, Some new results in the theory of resolvents of hermitian operators. Sov. Math. Dokl. 7 (1966), 1086–1089.

    Google Scholar 

  49. P. Kurasov and S.T. Kuroda, Krein’s resolvent formula and perturbation theory. J. Operator Theory 51 (2004), 321–334.

    MATH  MathSciNet  Google Scholar 

  50. H. Langer, B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pacific J. Math. 72 (1977), 135–165.

    MATH  MathSciNet  Google Scholar 

  51. L. Lanzani and Z. Shen, On the Robin boundary condition for Laplace’s equation in Lipschitz domain. Comm. Partial Diff. Eqs. 29 (2004), 91–109.

    Article  MATH  MathSciNet  Google Scholar 

  52. J.L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs. J. Math. Soc. Japan 14 (1962), 233–241.

    Article  MATH  MathSciNet  Google Scholar 

  53. M.M. Malamud, On a formula of the generalized resolvents of a nondensely defined hermitian operator. Ukrain. Math. J. 44 (1992), 1522–1547.

    Article  MathSciNet  Google Scholar 

  54. M.M. Malamud and V.I. Mogilevskii, Krein type formula for canonical resolvents of dual pairs of linear relations. Methods Funct. Anal. Topology, 8 (2002), no. 4, 72–100.

    MATH  MathSciNet  Google Scholar 

  55. M. Marletta, Eigenvalue problems on exterior domains and Dirichlet to Neumann maps. J. Comp. Appl. Math. 171 (2004), 367–391.

    Article  MATH  MathSciNet  Google Scholar 

  56. V.G. Maz’ja, Einbettungssätze für Sobolewsche Räume. Teubner Texte zur Mathematik, Teil 1, 1979; Teil 2, 1980, Teubner, Leipzig.

    Google Scholar 

  57. V.G. Maz’ja, Sobolev Spaces. Springer, Berlin, 1985.

    MATH  Google Scholar 

  58. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  59. A.B. Mikhailova, B.S. Pavlov, and L.V. Prokhorov, Intermediate Hamiltonian via Glazman’s splitting and analytic perturbation for meromorphic matrix-functions. Math. Nachr. 280 (2007), 1376–1416.

    Article  MATH  MathSciNet  Google Scholar 

  60. I. Mitrea and M. Mitrea, Multiple Layer Potentials for Higher Order Elliptic Boundary Value Problems. preprint, 2008.

    Google Scholar 

  61. S. Nakamura, A remark on the Dirichlet-Neumann decoupling and the integrated density of states. J. Funct. Anal. 179 (2001), 136–152.

    Article  MATH  MathSciNet  Google Scholar 

  62. G. Nenciu, Applications of the Krein resolvent formula to the theory of self-adjoint extensions of positive symmetric operators. J. Operator Theory 10 (1983), 209–218.

    MATH  MathSciNet  Google Scholar 

  63. K. Pankrashkin, Resolvents of self-adjoint extensions with mixed boundary conditions. Rep. Math. Phys. 58 (2006), 207–221.

    Article  MATH  MathSciNet  Google Scholar 

  64. B. Pavlov, The theory of extensions and explicitly-solvable models. Russ. Math. Surv. 42:6 (1987), 127–168.

    Article  MATH  Google Scholar 

  65. B. Pavlov, S-matrix and Dirichlet-to-Neumann operators. Ch. 6.1.6 in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, Vol. 2, R. Pike and P. Sabatier (eds.), Academic Press, San Diego, 2002, pp. 1678–1688.

    Google Scholar 

  66. A. Posilicano, A Krein-like formula for singular perturbations of self-adjoint operators and applications. J. Funct. Anal. 183 (2001), 109–147.

    Article  MATH  MathSciNet  Google Scholar 

  67. A. Posilicano, Self-adjoint extensions by additive perturbations. Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) Vol. II (2003), 1–20.

    MathSciNet  Google Scholar 

  68. A. Posilicano, Boundary triples and Weyl functions for singular perturbations of self-adjoint operators. Meth. Funct. Anal. Topology 10 (2004), 57–63.

    MATH  MathSciNet  Google Scholar 

  69. A. Posilicano, Self-adjoint extensions of restrictions. Operators and Matrices 2 (2008), 483–506.

    MATH  MathSciNet  Google Scholar 

  70. V. Ryzhov, A general boundary value problem and its Weyl function. Opuscula Math. 27 (2007), 305–331.

    MATH  MathSciNet  Google Scholar 

  71. V. Ryzhov, Weyl-Titchmarsh function of an abstract boundary value problem, operator colligations, and linear systems with boundary control. Complex Anal. Operator Theory, to appear.

    Google Scholar 

  72. Sh.N. Saakjan, On the theory of the resolvents of a symmetric operator with infinite deficiency indices. Dokl. Akad. Nauk Arm. SSR 44 (1965), 193–198. (Russian)

    MathSciNet  Google Scholar 

  73. B. Simon, Classical boundary conditions as a tool in quantum physics. Adv. Math. 30 (1978), 268–281.

    Article  MATH  Google Scholar 

  74. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.

    Google Scholar 

  75. A.V. Straus, Generalized resolvents of symmetric operators. Dokl. Akad. Nauk SSSR 71 (1950), 241–244. (Russian)

    MATH  MathSciNet  Google Scholar 

  76. A.V. Straus, On the generalized resolvents of a symmetric operator. Izv. Akad. Nauk SSSR Ser. Math. 18 (1954), 51–86. (Russian)

    MathSciNet  Google Scholar 

  77. A.V. Straus, Extensions and generalized resolvents of a non-densely defined symmetric operator. Math. USSR Izv. 4 (1970), 179–208.

    Article  MATH  Google Scholar 

  78. H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15 (2002), 475–524.

    MATH  MathSciNet  Google Scholar 

  79. E.R. Tsekanovskii and Yu.L. Shmul’yan, The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions. Russ. Math. Surv. 32:5 (1977), 73–131.

    Article  Google Scholar 

  80. M. Warma, The Laplacian with general Robin boundary conditions. Ph.D. Thesis, University of Ulm, 2002.

    Google Scholar 

  81. M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains. Semigroup Forum 73 (2006), 10–30.

    Article  MATH  MathSciNet  Google Scholar 

  82. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  83. I. Wood, Maximal Lp-regularity for the Laplacian on Lipschitz domains. Math. Z. 255 (2007), 855–875.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of M.G. Krein (1907–1989).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gesztesy, F., Mitrea, M. (2009). Robin-to-Robin Maps and Krein-Type Resolvent Formulas for Schrödinger Operators on Bounded Lipschitz Domains. In: Adamyan, V.M., et al. Modern Analysis and Applications. Operator Theory: Advances and Applications, vol 191. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9921-4_6

Download citation

Publish with us

Policies and ethics