Skip to main content

Groups of Operators for Evolution Equations of Quantum Many-particle Systems

  • Chapter
Modern Analysis and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 191))

  • 759 Accesses

Abstract

The aim of this work is to study the properties of groups of operators for evolution equations of quantum many-particle systems, namely, the von Neumann hierarchy for correlation operators, the BBGKY hierarchy for marginal density operators and the dual BBGKY hierarchy for marginal observables. We show that the concept of cumulants (semi-invariants) of groups of operators for the von Neumann equations forms the basis of the expansions for one-parametric families of operators of various evolution equations for infinitely many particles.

This work was partially supported by the WTZ grant No M/124 (UA 04/2007) and by the project of NAS of Ukraine No 0107U002333.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu.L. Daletskii and M.G. Krein, Stability of Solutions of Differential Equations in Banach Space. Amer. Math. Soc. (43), Providence RI USA, 1974.

    Google Scholar 

  2. C. Cercignani, V.I. Gerasimenko and D.Ya. Petrina, Many-Particle Dynamics and Kinetic Equations. Kluwer Acad. Publ., 1997.

    Google Scholar 

  3. A. Arnold, Mathematical properties of quantum evolution equations. Lect. Notes in Math. 1946, Springer, 2008.

    Google Scholar 

  4. H. Spohn, Kinetic equations for quantum many-particle systems. arXiv:0706.0807v1, 2007.

    Google Scholar 

  5. D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, A short review on the derivation of the nonlinear quantum Boltzmann equations. Commun. Math. Sci. 5 (2007), 55–71.

    MathSciNet  Google Scholar 

  6. R. Adami, C. Bardos, F. Golse and A. Teta, Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension one. Asymptot. Anal. 40(2) (2004), 93–108.

    MATH  MathSciNet  Google Scholar 

  7. L. Erdős, M. Salmhofer and H.-T. Yau, On quantum Boltzmann equation. J. Stat. Phys. 116(116) (2004), 367–380.

    Article  Google Scholar 

  8. L. Erdős, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schröodinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3) (2007), 515–614.

    Article  MathSciNet  Google Scholar 

  9. J. Fröhlich and E. Lenzmann, Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation. Séminaire Équations aux Dérivées Partielles. 2003–2004, Exp. No. XIX, École Polytech., Palaiseau, (2004).

    Google Scholar 

  10. R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. 5, Springer-Verlag, 1992.

    Google Scholar 

  11. D.Ya. Petrina, Mathematical Foundations of Quantum Statistical Mechanics. Continuous Systems. Kluwer, 1995.

    Google Scholar 

  12. F.A. Berezin and M.A. Shoubin, Schrödinger Equation. Kluwer, 1991.

    Google Scholar 

  13. O. Bratelli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1, Springer-Verlag, 1979.

    Google Scholar 

  14. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, 1995.

    Google Scholar 

  15. A. Bellini-Morante and A.C. McBride, Applied Nonlinear Semigroups. John Wiley and Sons, 1998.

    Google Scholar 

  16. J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications. Springer, 2006.

    Google Scholar 

  17. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, 1983.

    Google Scholar 

  18. R. Aliki and K. Lendi, Quantum dynamical semigroups and applications. Lect. Notes in Phys. 286, Springer, 1987.

    Google Scholar 

  19. P.A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations. Math. Meth. Appl. Sci. 11 (1989), 459–469.

    Article  MATH  MathSciNet  Google Scholar 

  20. V.O. Shtyk, On the solutions of the nonlinear Liouville hierarchy. J. Phys. A: Math. Theor. 40 (2007), 9733–9742.

    Article  MATH  MathSciNet  Google Scholar 

  21. M.S. Green, Boltzmann equation from the statistical mechanical point of view. J. Chem. Phys. 25(5) (1956), 836–855.

    Article  MathSciNet  Google Scholar 

  22. J. Ginibre, Some applications of functional integrations in statistical mechanics. In Statistical Mechanics and Quantum Field Theory. (Eds. S. De Witt and R. Stora, Gordon and Breach), (1971), 329–427.

    Google Scholar 

  23. V.I. Gerasimenko and V.O. Shtyk, Evolution of correlations of quantum many-particle systems. J. Stat. Mech. 3 (2008), P03007, 24p.

    Article  Google Scholar 

  24. V.I. Gerasimenko and V.O. Shtyk, Initial-value problem for the Bogolyubov hierarchy for quantum systems of particles. Ukrain. Math. J. 58(9) (2006), 1329–1346.

    Article  Google Scholar 

  25. V.I. Gerasimenko and T.V. Ryabukha, Cumulant representation of solutions of the BBGKY hierarchy of equations. Ukrain. Math. J. 54(10) (2002), 1583–1601.

    Article  MathSciNet  Google Scholar 

  26. V.I. Gerasimenko, T.V. Ryabukha and M.O. Stashenko, On the structure of expansions for the BBGKY hierarchy solutions. J. Phys. A: Math. Gen. 37 (2004), 9861–9872.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Borgioli and V. Gerasimenko, The dual BBGKY hierarchy for the evolution of observables. Riv. Mat. Univ. Parma. 4 (2001), 251–267.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Gerasimenko, V.I. (2009). Groups of Operators for Evolution Equations of Quantum Many-particle Systems. In: Adamyan, V.M., et al. Modern Analysis and Applications. Operator Theory: Advances and Applications, vol 191. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9921-4_21

Download citation

Publish with us

Policies and ethics