Skip to main content

High-accuracy Stable Difference Schemes for Well-posed NBVP

  • Chapter
Modern Analysis and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 191))

Abstract

The single step difference schemes of the high order of accuracy for the approximate solution of the nonlocal boundary value problem (NBVP)

$$ v'\left( t \right) + Av\left( t \right) = f\left( t \right)\left( {0 \leqslant t \leqslant 1} \right),v\left( 0 \right) = v\left( \lambda \right) + \mu , 0 < \lambda \leqslant 1 $$

for the differential equation in an arbitrary Banach space E with the strongly positive operator A are presented. The construction of these difference schemes is based on the Padé difference schemes for the solutions of the initial-value problem for the abstract parabolic equation and the high order approximation formula for \( v\left( 0 \right) = v\left( \lambda \right) + \mu \). The stability, the almost coercive stability and coercive stability of these difference schemes are established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Dehghan, On the Numerical Solution of the Diffusion Equation with a Nonlocal Boundary Condition. Mathematical Problems in Engineering 2003 (2003), no. 2, 81–92.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.R. Cannon, S. Perez Esteva and J. Van Der Hoek, A Galerkin Procedure for the Diffusion Equation Subject to the Specification of Mass. SIAM J. Numerical Analysis 24 (1987), no. 3, 499–515.

    Article  MATH  Google Scholar 

  3. N. Gordeziani, P. Natani and P.E. Ricci, Finite-Difference Methods for Solution of Nonlocal Boundary Value Problems. Computers and Mathematics with Applications 50 (2005), 1333–1344.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Dautray and J.L. Lions, Analyse Mathématique et Calcul Numérique Pour les Sciences et les Technique. Volume 1–11, Masson, Paris, 1988.

    Google Scholar 

  5. A. Ashyralyev and Y. Ozdemir, Stability of Difference Schemes for Hyperbolic-Parabolic Equations. Computers and Mathematics with Applications 50 (2005), no. 8–9, 1443–1476.

    Article  MATH  MathSciNet  Google Scholar 

  6. P.E. Sobolevskii, The Coercive Solvability of Difference Equations. Dokl. Acad. Nauk SSSR 201 (1971), no. 5, 1063–1066. (Russian).

    MathSciNet  Google Scholar 

  7. A. Ashyralyev, A. Hanalyev and P.E. Sobolevskii, Coercive Solvability of Nonlocal Boundary Value Problem for Parabolic Equations. Abstract and Applied Analysis 6 (2001), no. 1, 53–61.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Ashyralyev, I. Karatay and P.E. Sobolevskii, Well-Posedness of the Nonlocal Boundary Value Problem for Parabolic Difference Equations. Discrete Dynamics in Nature and Society 2004 (2004), no. 2, 273–286.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Ashyralyev, Nonlocal Boundary-Value Problems for Abstract Parabolic Equations: Well-Posedness in Bochner Spaces. Journal of Evolution Equations 6 (2006), no. 1, 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Ashyralyev and P.E. Sobolevskii, Well-Posedness of Parabolic Difference Equations. Birkhäuser Verlag, 1994.

    Google Scholar 

  11. A. Ashyralyev, Well-Posedness on the Modified Crank-Nicholson Difference Schemes in Bochner Spaces, Discrete and Continuous Dynamical Systems-Series B 7 (2007), no. 1, 29–51.

    MATH  MathSciNet  Google Scholar 

  12. A. Ashyralyev, Well-Posedness of the Boundary Value Problem for Parabolic Equations in Difference Analogues of Spaces of Smooth Functions. Mathematical Problems in Engineering 2007 (2007), Article ID 90815, 1–16.

    Article  MathSciNet  Google Scholar 

  13. A. Ashiraliev and P.E. Sobolevskii, Differential Schemes of High Order of Accuracy for Parabolic Equations with Variable Coefficients. Dopovidi Akademii Nauk Ukrainskoi RSR Seriya A-Fiziko-Matematichni ta Technichni Nauki 6 (1988), 3–7. (Russian).

    Google Scholar 

  14. A. Ashyralyev and P.E. Sobolevskii, Well-posed Solvability of the Cauchy Problem for Difference-equations of the Parabolic Type. Nonlinear Analysis-Theory, Methods and Applications 24 (2005), no. 2, 257–264.

    Article  MathSciNet  Google Scholar 

  15. A. Ashyralyev, P.E. Sobolevskii, New Difference Schemes for Partial Differential Equations. Birkhäuser Verlag, 2004.

    Google Scholar 

  16. D. Guidetti, B. Karasozen, and S. Piskarev, Approximation of Abstract Differential Equations. Journal of Math. Sci. 122 (2004), no. 2, 3013–3054.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Ashyralyev, S. Piskarev, S. Wei, On Well-Posedness of the Difference Schemes for Abstract Parabolic Equations in L p ([0,1], E) Spaces. Numerical Functional Analysis and Optimation 23 (2002), no. 7–8, 669–693.

    Article  MATH  Google Scholar 

  18. M. Grouzeix, S. Larson, S. Piskarev, V. Thomee, The Stability of Rational Approximations of Analytic Semigroups. Preprint, Department of Mathematics, Chalmers Institute of Technology, Göteborg, 1991, 28p.

    Google Scholar 

  19. I.P. Gavrilyuk and V.L. Makarov, Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equation. Computational Methods in Applied Mathematics 1 (2001), no. 4, 333–355.

    MATH  MathSciNet  Google Scholar 

  20. I.P. Gavrilyuk and V.L. Makarov, Algorithms without Accuracy Saturation for Evolution Equations in Hilbert and Banach Spaces. Mathematics of Computation 74 (2005), 555–583.

    Article  MATH  MathSciNet  Google Scholar 

  21. I.P. Gavrilyuk and V.L. Makarov, Exponentially Convergent Algorithms for the Operator Exponential with Applications to Inhomogeneous Problems in Banach Spaces. SIAM Journal of Num. Anal. 43 (2005), no. 5, 2144–2171.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Gordeziani, H. Meladze and G. Avalishvili, On One Class of Nonlocal in Time Problems for First-Order Evolution Equations. Zh. Obchysl. Prykl. Mat. 88 (2003), no. 1, 66–78.

    MATH  Google Scholar 

  23. D. Gordeziani and G. Avalishvili, Time-Nonlocal Problems for Schrödinger Type Equations. I: Problems in Abstract Spaces. Differ. Equ. 41 (2005), no. 5, 703–711.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Agarwal, M. Bohner and V.B. Shakhmurov, Maximal Regular Boundary Value Problems in Banach-Valued Weighted Spaces. Boundary Value Problems 1 (2005), 9–42.

    Article  MathSciNet  Google Scholar 

  25. V.B. Shakhmurov, Coercive Boundary Value Problems for Regular Degenerate Differential-Operator Equations. Journal of Mathematical Analysis and Applications 292 (2004), no. 2, 605–620.

    Article  MATH  MathSciNet  Google Scholar 

  26. J.I. Ramos, Linearly-Implicit, Approximate Factorization, Exponential Methods for Multi-Dimensional Reaction-Diffusion Equations. Applied Mathematics and Computation 174 (2006), no. 2, 1609–1633.

    Article  MATH  MathSciNet  Google Scholar 

  27. X.Z. Liu, X. Cui and J.G. Sun, FDM for Multi-Dimensional Nonlinear Coupled System of Parabolic and Hyperbolic Equations. Journal of Computational and Applied Mathematics 186 (2006), no. 2, 432–449.

    Article  MATH  MathSciNet  Google Scholar 

  28. A.V. Gulin and V.A. Morozova, On the Stability of a Nonlocal Finite-Difference Boundary Value Problem. Differ. Equ. 39 (2003), no. 2, 962–967. (Russian).

    Article  MATH  MathSciNet  Google Scholar 

  29. A.V. Gulin, N.I. Ionkin and V.A. Morozova, On the Stability of a Nonlocal Finite-Difference Boundary Value Problem. Differ. Equ. 37 (2001), no. 7, 970–978. (Russian).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, 1995.

    Google Scholar 

  31. Y.G. Wang, M. Oberguggenberger, Nonlinear Parabolic Equations with Regularized Derivatives. Journal of Mathematical Analysis and Applications 233 (1999), no. 2, 644–658.

    Article  MATH  MathSciNet  Google Scholar 

  32. Beyn Wolf-Jurgen, B.M. Garay, Estimates of Variable Stepsize Runge-Kutta Methods for Sectorial Evolution Equations with Nonsmooth Data. App. Num. Math. 41 (2002), no. 3, 369–400.

    Article  Google Scholar 

  33. R. Rautmann, H 2,r-Convergent Approximation Schemes to the Navier-Stokes Equations. Nonlinear Analysis — Theory, Methods and Applications 30 (1997), no. 4, 1915–1926.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Ashyralyev, Method of Positive Operators of Investigations of the High Order of Accuracy Difference Schemes for Parabolic and Elliptic Equations. Doctor of Sciences Thesis, Kiev, 1992, 312p. (Russian).

    Google Scholar 

  35. A. Ashyralyev, Fractional Spaces Generated by the Positive Differential and Difference Operators in a Banach Space. in ISMME, Springer, 2006, 10–19.

    Google Scholar 

  36. A. Ashyralyev, Nonlocal Boundary Value Problems for Partial Differential Equations: Well-Posedness. AIP Conference Proceedings Global Analysis and Applied Mathematics: International Workshop on Global Analysis 729 (2004), 325–331.

    MathSciNet  Google Scholar 

  37. A. Ashyralyev and N. Altay, A Note on the Well-Posedness of the Nonlocal Boundary Value Problem for Elliptic Difference Equations. Applied Mathematics and Computation 175 (2006), no. 1, 49–60.

    Article  MATH  MathSciNet  Google Scholar 

  38. Yu.A. Smirnitskii and P.E. Sobolevskii, The Positivity of Difference Operators, Vychisl. Sist. 87 (1981), 120–133. (Russian).

    MathSciNet  Google Scholar 

  39. Kh.A. Alibekov, Investigations in C and L p of Difference Schemes of High Order Accuracy for Approximate Solution of Multidimensional Parabolic Boundary Value Problems. Ph.D. Thesis, Voronezh, VSU, 1978, 134p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Ashyralyev, A. (2009). High-accuracy Stable Difference Schemes for Well-posed NBVP. In: Adamyan, V.M., et al. Modern Analysis and Applications. Operator Theory: Advances and Applications, vol 191. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9921-4_14

Download citation

Publish with us

Policies and ethics