Skip to main content

Block Tridiagonal Matrices and a Beefed-up Version of the Ehrenfest Urn Model

  • Chapter
Book cover Modern Analysis and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 190))

Abstract

The very classical Ehrenfest urn model can be solved exactly in terms of Krawtchouk polynomials. I consider a natural extension of this model which goes beyond “nearest neighbours” random walks and whose analysis benefits from the study of a family of matrix-valued orthogonal polynomials. This subject was started by M.G. Krein around 1949. This paper shows one more example of his vast and lasting legacy in the never-ending task of finding new mathematical tools to analyze the physical world.

The author was supported in part by NSF Grant # DMS 0603901.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Andrews, R. Askey, and R. Roy, Special functions. Encyclopedia of Mathematics and its applications, Cambridge University Press, 1999.

    Google Scholar 

  2. R. Askey, Evaluation of Sylvester type determinants using orthogonal polynomials. Advances in Analysis, Proceed. 4th international ISAAC Congress, ed. H.G.W. Begehr et al., World Scientific, Singapore (2005), 1–16.

    Chapter  Google Scholar 

  3. S. Basu, and N.K. Bose, Matrix Stieltjes series and network models. SIAM J. Matrix Anal. Applic. 14 (1983), no. 2, 209–222.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Dette, W. Studden, W., Quadrature formulas for matrix measures, a geometric approach. Linear Algebra Appl. 364 (2003), 33–64.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Dette, B. Reuther, W. Studden, and M. Zygmunt, Matrix measures and random walks with a block tridiagonal transition matrix. SIAM J. Matrix Anal. Applic. 29 (2006), no. 1, 117–142.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Duran Markov’s theorem for orthogonal matrix polynomials. Can. J. Math. 48 (1996), 1180–1195.

    MATH  MathSciNet  Google Scholar 

  7. A.J. Duran, and P. Lopez Rodriguez, Orthogonal matrix polynomials: zeros and Blumenthal theorem. J. Approx. Theory 84 (1996), 96–118.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.J. Duran, and B. Polo, Gauss quadrature formulae for orthogonal matrix polynomials. Linear Alg. Appl. 355 (2002), 119–146.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Ehrenfest, and T. Eherenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Physikalische Zeitschrift 8 (1907), 311–314.

    Google Scholar 

  10. W. Feller, On second order differential operators. Ann. of Math. 61 (1955), no. 1, 90–105.

    Article  MathSciNet  Google Scholar 

  11. W. Feller, An introduction to Probability Theory and its Applications. vol. 1, 3rd edition, Wiley 1967.

    Google Scholar 

  12. F.A. Grünbaum, Random walks and orthogonal polynomials: some challenges. to appear in Probability, Geometry and Integrable Systems, MSRI Publication 55 (2007), see arXiv math.PR/0703375.

    Google Scholar 

  13. F.A. Grünbaum, and M.D. de la Iglesia, Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes. submitted to SIAM J. Matrix Anal. Applic.

    Google Scholar 

  14. M. Kac, Random walk and the theory of Brownian motion. American Math. Monthly 54 (1947), 369–391.

    Article  MATH  Google Scholar 

  15. S. Karlin, A first course in stochastic process. Academic Press, 1966.

    Google Scholar 

  16. S. Karlin, and H. Taylor, A second course in stochastic processes. Academic Press, 1981.

    Google Scholar 

  17. S. Karlin, and J. McGregor, Ehrenfest urn models. J. Appl. Prob 2 (1965) 352–376.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Karlin, and J. McGregor, Random walks. Illinois J. Math. 3 (1959), 66–81.

    MATH  MathSciNet  Google Scholar 

  19. M.G. Krein, Fundamental aspects of the representation theory of hermitian operators with deficiency index (m, m). AMS Translations, Series 2, vol. 97, Providence, Rhode Island (1971), 75–143.

    Google Scholar 

  20. M.G. Krein, Infinite J-matrices and a matrix moment problem. Dokl. Akad. Nauk SSSR 69 (1949), no. 2, 125–128.

    MATH  MathSciNet  Google Scholar 

  21. G. Latouche, and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability, 1999.

    Google Scholar 

  22. H.P. McKean jr., Elementary solutions for certain parabolic partial differential equations. Trans. Amer. Math. Soc. 82 (1956), 519–548.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Schroedinger, and F. Kohlrausch, Das Ehrenfestsche Model der H-Kurve. Phys. Zeit. 27 (1926), 306–313.

    Google Scholar 

  24. A. Sinap, and W. van Assche, Polynomial Interpolation and Gaussian Quadrature for Matrix Valued Functions. Linear Algebra Appl. 207 (1994), 71–114.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Tirao, The matrix valued hypergeometric equation. Proc. Nat. Acad. Sci. U.S.A. 100 (2003), no. 14, 8138–8141.

    Article  MATH  MathSciNet  Google Scholar 

  26. E.C. Titchmarsh, Eigenfunction expansions associated with second order differential equations. Oxford at the Clarendon Press, 1946.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To the memory of Prof. Mark G. Krein, with gratitude.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Alberto Grünbaum, F. (2009). Block Tridiagonal Matrices and a Beefed-up Version of the Ehrenfest Urn Model. In: Adamyan, V.M., et al. Modern Analysis and Applications. Operator Theory: Advances and Applications, vol 190. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9919-1_15

Download citation

Publish with us

Policies and ethics