Advertisement

The FN-action on the Product of the Two Limit Trees for an Iwip Automorphism

  • Martin Lustig
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

An elementary proof is given for the fact that, for every non-surface iwip automorphisms ϕ of a free group F N , the F N -action, on the cartesian product T+(ϕ) × T+(ϕ −1) of the (non-simplicial) forward limit ℝ-trees for ϕ and ϕ −1, is properly discontinuous. Alternative proofs, derived from deeper results, have been given by Bestvina-Feighn-Handel [3] and later by Levitt-Lustig [10]; compare also Guirardel [9].

Mathematics Subject Classification (2000)

Primary 20F36 Secondary 20E36 57M05 

Keywords

ℝ-trees discrete action on product iwip automorphisms of free groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bestvina and M. Handel, Train tracks for automorphisms of the free group, Annals of Math. 135, pp. 1–51 (1992)CrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Bestvina and M. Feighn, Outer limits, preprint 1992Google Scholar
  3. [3]
    M. Bestvina, M. Feighn and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7, pp. 215–244 (1998)CrossRefMathSciNetGoogle Scholar
  4. [4]
    M. Bestvina, M. Feighn and M. Handel, Erratum to Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7, pp. 1143 (1998)CrossRefMathSciNetGoogle Scholar
  5. [5]
    P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10, pp. 1071–1089 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    M. Culler, G. Levitt, P. Shalen, unpublished manuscriptGoogle Scholar
  7. [7]
    M. Feighn and M. Handel, Mapping tori of free group automorphisms are coherent, Ann. of Math. 149, pp. 1061–1077 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Gaboriau, A. Jäger, G. Levitt and M. Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93, pp. 425–452 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    V. Guirardel, Coeur et nombre d’intersection pour les actions de groupes sur les arbres, Annales de l’E.N.S. 38, pp. 847–888 (2005) [English version: Core and intersection number for group actions on trees, arXiv math. Gr 0407206]zbMATHMathSciNetGoogle Scholar
  10. [10]
    G. Levitt and M. Lustig, Automorphisms of free groups have asymtotically periodic dynamics, to appear in J. reine u. angew. Math. (arXiv math. GR 0407437)Google Scholar
  11. [11]
    M. Lustig, Automorphismen von freien Gruppen, Habilitationsschrift 1992, Ruhr-Universität BochumGoogle Scholar
  12. [12]
    M. Lustig, Discrete actions on the product of two non-simplicialℝ-trees, preprint 1994Google Scholar
  13. [13]
    M. Lustig, Conjugacy and centralizers for iwip automorphisms of free groups, Geometric Group Theory, Trends in Mathematics, pp. 197–224, Birkhäuser, Basel 2007CrossRefGoogle Scholar
  14. [14]
    M. Lustig et al., Seven steps to happiness, preliminary preprint 2008Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Martin Lustig
    • 1
  1. 1.Mathématiques (LATP)Université Paul Cézanne — Aix Marseille IIIMarseille 20France

Personalised recommendations