Skip to main content

The F N -action on the Product of the Two Limit Trees for an Iwip Automorphism

  • Conference paper
Combinatorial and Geometric Group Theory

Part of the book series: Trends in Mathematics ((TM))

  • 913 Accesses

Abstract

An elementary proof is given for the fact that, for every non-surface iwip automorphisms ϕ of a free group F N , the F N -action, on the cartesian product T+(ϕ) × T+(ϕ −1) of the (non-simplicial) forward limit ℝ-trees for ϕ and ϕ −1, is properly discontinuous. Alternative proofs, derived from deeper results, have been given by Bestvina-Feighn-Handel [3] and later by Levitt-Lustig [10]; compare also Guirardel [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bestvina and M. Handel, Train tracks for automorphisms of the free group, Annals of Math. 135, pp. 1–51 (1992)

    Article  MathSciNet  Google Scholar 

  2. M. Bestvina and M. Feighn, Outer limits, preprint 1992

    Google Scholar 

  3. M. Bestvina, M. Feighn and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7, pp. 215–244 (1998)

    Article  MathSciNet  Google Scholar 

  4. M. Bestvina, M. Feighn and M. Handel, Erratum to Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7, pp. 1143 (1998)

    Article  MathSciNet  Google Scholar 

  5. P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10, pp. 1071–1089 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Culler, G. Levitt, P. Shalen, unpublished manuscript

    Google Scholar 

  7. M. Feighn and M. Handel, Mapping tori of free group automorphisms are coherent, Ann. of Math. 149, pp. 1061–1077 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Gaboriau, A. Jäger, G. Levitt and M. Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93, pp. 425–452 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Guirardel, Coeur et nombre d’intersection pour les actions de groupes sur les arbres, Annales de l’E.N.S. 38, pp. 847–888 (2005) [English version: Core and intersection number for group actions on trees, arXiv math. Gr 0407206]

    MATH  MathSciNet  Google Scholar 

  10. G. Levitt and M. Lustig, Automorphisms of free groups have asymtotically periodic dynamics, to appear in J. reine u. angew. Math. (arXiv math. GR 0407437)

    Google Scholar 

  11. M. Lustig, Automorphismen von freien Gruppen, Habilitationsschrift 1992, Ruhr-Universität Bochum

    Google Scholar 

  12. M. Lustig, Discrete actions on the product of two non-simplicialℝ-trees, preprint 1994

    Google Scholar 

  13. M. Lustig, Conjugacy and centralizers for iwip automorphisms of free groups, Geometric Group Theory, Trends in Mathematics, pp. 197–224, Birkhäuser, Basel 2007

    Chapter  Google Scholar 

  14. M. Lustig et al., Seven steps to happiness, preliminary preprint 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this paper

Cite this paper

Lustig, M. (2010). The F N -action on the Product of the Two Limit Trees for an Iwip Automorphism. In: Bogopolski, O., Bumagin, I., Kharlampovich, O., Ventura, E. (eds) Combinatorial and Geometric Group Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9911-5_9

Download citation

Publish with us

Policies and ethics