Advertisement

Equations and Fully Residually Free Groups

  • Olga Kharlampovich
  • Alexei G. Myasnikov
Part of the Trends in Mathematics book series (TM)

Abstract

This paper represents notes of the mini-courses given by the authors at the GCGTA conference in Dortmund (2007), Ottawa-Saint Sauveur conference (2007), Escola d’Algebra in Rio de Janeiro (2008) and Alagna (Italy, 2008) conference on equations in groups. We explain here the Elimination process for solving equations in a free group which has Makanin-Razborov process as a prototype. We also explain how we use this process to obtain the structure theorem for finitely generated fully residually free groups and many other results.

Mathematics Subject Classification (2000)

20-02 

Keywords

Equations free groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.I. Appel. One-variable equations in free groups. Proc. Amer. Math. Soc., 19:912–918, 1968.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    G. Baumslag, On generalized free products, Math. Z., 78:423–438, 1962.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B. Baumslag, Residually free groups, Proc. London. Math. Soc. (3), 17:402–418, 1967.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J.L. Bell, A.B. Slomson, Models and ultraproducts: an introduction, North-Holland, Amsterdam, 1969.zbMATHGoogle Scholar
  5. [5]
    G. Baumslag, A. Myasnikov, V. Remeslennikov. Algebraic geometry over groups I. Algebraic sets and ideal theory. Journal of Algebra, 1999, v. 219, 16–79.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G. Baumslag, A. Myasnikov and V. Remeslennikov, Malnormality is decidable in free groups. Internat. J. Algebra Comput. 9 no. 6 (1999), 687–692.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Bestvina, M. Feighn, Stable actions of groups on real trees, Invent. Math., 1995, v. 121, 2, pp. 287–321.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Bestvina, M.; Feighn, M. A combination theorem for negatively curved groups. J. Differential Geom. 35 (1992), no. 1, 85–101. Addendum and correction to: “A combination theorem for negatively curved groups” J. Differential Geom. 35 (1992), no. 1, 85–101, J. Differential Geom. 43 (1996), no. 4, 783–788.zbMATHMathSciNetGoogle Scholar
  9. [9]
    M. Bridson, J. Howie, C. Miller, H. Short, Subgroups of direct products of limit groups, arXiv:0704.3935v2, 6Nov 2007, Annals of Math., in press.Google Scholar
  10. [10]
    M. Bridson, J. Howie, C. Miller, H. Short, Finitely presented residually free groups, arXiv:0809.3704v1, 22 Sep. 2008.Google Scholar
  11. [11]
    Bryant R., The verbal topology of a group, Journal of Algebra, 48:340–346, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    I. Bumagin, The conjugacy problem for relatively hyperbolic groups. Algebr. Geom. Topol. 4 (2004), 1013–1040.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    I. Bumagin, O. Kharlampovich, A. Myasnikov. Isomorphism problem for finitely generated fully residually free groups., J. Pure and Applied Algebra, Volume 208, Issue 3, March 2007, Pages 961–977.Google Scholar
  14. [14]
    C.C. Chang, H.J. Keisler, Model Theory. North-Holland, London, N.Y., 1973.zbMATHGoogle Scholar
  15. [15]
    S.C. Chagas, P. Zalesskii, Limit Groups are Conjugacy Separable. IJAC 17(4): 851–857 (2007)zbMATHMathSciNetGoogle Scholar
  16. [16]
    C. Champetier, V. Guirardel, Limit groups as limits of free groups: compactifying the set of free groups, Israel Journal of Mathematics 146 (2005), 1–75.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    D.E. Cohen, Combinatorial group theory: a topological approach. Cambridge Univ. Press, 1989.Google Scholar
  18. [18]
    L.P. Comerford Jr. and C.C. Edmunds. Solutions of equations in free groups. Walter de Gruyter, Berlin, New York, 1989.Google Scholar
  19. [19]
    F. Dahmani, D. Groves. The isomorphism problem for toral relatively hyperbolic groups. Publ. Math. Inst. Hautes Études Sci. No. 107 (2008), 211–290.zbMATHMathSciNetGoogle Scholar
  20. [20]
    F. Dahmani, Existential questions in (relatively) hyperbolic groups. to appear in Israel J. Math.Google Scholar
  21. [21]
    F. Dahmani, Combination of convergence groups. Geom. Topol. 7 (2003), 933–963.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Yu.L. Ershov, E.A. Palutin, Mathematical Logic. Walter de Gruyter, Berlin, New York, 1989.zbMATHGoogle Scholar
  23. [23]
    B. Fine, A.M. Gaglione, A. Myasnikov, G. Rosenberger, and D. Spellman. A classification of fully residually free groups of rank three or less. Journal of Algebra 200 (1998), no. 2, 571–605. MR 99b:20053zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    V. Guirardel, Limit groups and groups acting freely on ℝ n-trees, Geom. Topol. 8 (2004), 1427–1470.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    V. Guba, Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems. Mat. Zametki, 40:321–324, 1986.zbMATHMathSciNetGoogle Scholar
  26. [26]
    D. Gildenhuys, O. Kharlampovich, and A. Myasnikov, CSA groups and separated free constructions. Bull. Austr. Math. Soc., 1995, 52, 1, pp. 63–84.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    R.I. Grigorchuk and P.F. Kurchanov. On quadratic equations in free groups. Contemp. Math., 131(1):159–171, 1992.MathSciNetGoogle Scholar
  28. [28]
    D. Groves, H. Wilton. Enumerating limit groups, arXiv:0704.0989v2.Google Scholar
  29. [29]
    R.C. Lyndon and P.E. Schupp. Combinatorial group theory. Springer, 1977.Google Scholar
  30. [30]
    R.C. Lyndon. Groups with parametric exponents. Trans. Amer. Math. Soc., 96:518–533, 1960.zbMATHMathSciNetGoogle Scholar
  31. [31]
    R.C. Lyndon. Equations in free groups. Trans. Amer. Math. Soc. 96 (1960), 445–457.zbMATHMathSciNetGoogle Scholar
  32. [32]
    R.C. Lyndon. Equations in groups. Bol. Soc. Bras. Mat., 11:79–102, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    R.C. Lyndon, Groups with parametric exponents, Trans. Amer. Math. Soc., 96, 518–533, (1960).zbMATHMathSciNetGoogle Scholar
  34. [34]
    A.I. Malcev, On equation zxyx −1 y −1 z −1=aba −1 b −1 in a free group, Algebra and Logic, 1 (1962), 45–50.MathSciNetGoogle Scholar
  35. [35]
    A. Myasnikov, V. Remeslennikov, Degree groups, Foundations of the theory and tensor completions, Sibirsk. Mat. Zh., 35, (1994), 5, 1106–1118.MathSciNetGoogle Scholar
  36. [36]
    A. Myasnikov, V. Remeslennikov, Algebraic geometry over groups II: Logical foundations, J. Algebra, 234 (2000), pp. 225–276.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    O. Kharlampovich and A. Myasnikov. Irreducible affine varieties over a free group. 1: irreducibility of quadratic equations and Nullstellensatz. J. of Algebra, 200:472–516, 1998. MR 2000b:20032azbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    O. Kharlampovich and A. Myasnikov, Irreducible affine varieties over a free group. II: Systems in triangular quasi-quadratic form and description of residually free groups. J. of Algebra, v. 200, no. 2, 517–570, 1998. MR 2000b:20032bzbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    O. Kharlampovich and A. Myasnikov. Description of Fully Residually Free Groups and Irreducible Affine Varieties Over a Free Group. Banff Summer School 1996, Centre de Recherches Mathématiques, CRM Proceedings and Lecture Notes, v. 17, 1999, p. 71–80. MR 99j:20032MathSciNetGoogle Scholar
  40. [40]
    O. Kharlampovich, A. Myasnikov, Hyperbolic groups and free constructions, Trans. Amer. Math. Soc. 350 (1998), no. 2, 571–613.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    O. Kharlampovich, A. Myasnikov, Implicit function theorems over free groups. J. Algebra, 290 (2005) 1–203.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    O. Kharlampovich, A. Myasnikov, Effective JSJ decompositions, Group Theory: Algorithms, Languages, Logic, Contemp. Math., AMS, 2004, 87–212 (Math GR/0407089).Google Scholar
  43. [43]
    O. Kharlampovich, A. Myasnikov, V. Remeslennikov, D. Serbin. Subgroups of fully residually free groups: algorithmic problems,Group theory, Statistics and Cryptography, Contemp. Math., Amer. Math. Soc., 360, 2004, 61–103.MathSciNetGoogle Scholar
  44. [44]
    Kharlampovich O., Myasnikov A., Elementary theory of free non-abelian groups, J. Algebra, 302, Issue 2, 451–552, 2006.MathSciNetGoogle Scholar
  45. [45]
    O. Kharlampovich, A. Myasnikov, D. Serbin, Groups with free regular length function on ℤ n.Google Scholar
  46. [46]
    O. Kharlampovich, A. Myasnikov, D. Serbin n-free groups.Google Scholar
  47. [47]
    E. Lioutikova, Lyndon’s group is conjugately residually free. Internat. J. Algebra Comput. 13 (2003), no. 3, 255–275.zbMATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    G.S. Makanin. Equations in a free group (Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 46:1199–1273, 1982. transl. in Math. USSR Izv., V. 21, 1983; MR 84m:20040.zbMATHMathSciNetGoogle Scholar
  49. [49]
    G.S. Makanin. Decidability of the universal and positive theories of a free group (Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 48(1):735–749, 1985. transl. in Math. USSR Izv., V. 25, 1985; MR 86c:03009.MathSciNetGoogle Scholar
  50. [50]
    Ju.I. Merzljakov. Positive formulae on free groups. Algebra i Logika, 5(4):25–42, 1966.MathSciNetGoogle Scholar
  51. [51]
    Myasnikov A., Remeslennikov V., Serbin D., Fully residually free groups and graphs labeled by infinite words. to appear in IJAC.Google Scholar
  52. [52]
    P. Pfander, Finitely generated subgroups of the free Z[t]-group on two generators, Model theory of groups and automorphism groups (Blaubeuren, 1995), 166–187, London Math. Soc. Lecture Note Ser., 244, Cambridge Univ. Press, Cambridge, 1997.Google Scholar
  53. [53]
    E. Rips and Z. Sela. Cyclic splittings of finitely presented groups and the canonical JSJ decomposition. Annals of Math., 146, 53–109, 1997.CrossRefMathSciNetGoogle Scholar
  54. [54]
    A. Razborov. On systems of equations in a free group. Math. USSR, Izvestiya, 25(1):115–162, 1985.CrossRefGoogle Scholar
  55. [55]
    A. Razborov. On systems of equations in a free group. PhD thesis, Steklov Math. Institute, Moscow, 1987.Google Scholar
  56. [56]
    V. Remeslennikov, ∃-free groups, Siberian Math J., 30 (6):998–1001, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  57. [57]
    Z. Sela. Diophantine geometry over groups I: Makanin-Razborov diagrams. Publications Mathématiques de l’IHES 93(2001), 31–105.zbMATHCrossRefMathSciNetGoogle Scholar
  58. [58]
    J.R. Stallings. Finiteness of matrix representation. Ann. Math., 124:337–346, 1986.CrossRefMathSciNetGoogle Scholar
  59. [59]
    L. Ribes, P. Zalesskii, Conjugacy separability of amalgamated free products of groups. J. Algebra, 1996, v. 179, 3, pp. 751–774zbMATHCrossRefMathSciNetGoogle Scholar
  60. [60]
    Z. Sela. Diophantine geometry over groups VI: The elementary theory of a free group. GAFA, 16(2006), 707–730.zbMATHMathSciNetGoogle Scholar
  61. [61]
    N. Touikan, On the coordinate groups of irreducible systems of equations in two variables over free groups, arXiv:0810.1509v3, 11 Nov. 2008.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Olga Kharlampovich
    • 1
  • Alexei G. Myasnikov
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations