Limits of Thompson’s Group F

  • Roland Zarzycki
Part of the Trends in Mathematics book series (TM)


Let F be the Thompson’s group 〈x 0 , x 1 vb[x 0 x−1 1 , x−i 0 x 1 xi 0 ], i=1,2.〉 Let G n =〈y 1 ,..., y m , x 0 , x 1 vb[x 0 x−1 1 , x−i 0 x 1 xi 0 ], y −1 j g j,n (x 0 , x 1 ), i=1, 2, jm〉, where g jn , (x 0 , x 1 ) ∈ F, n ∈ N, be a family of groups isomorphic to F and marked by m+2 elements. If the sequence (G n )n<ω is convergent in the space of marked groups and G is the corresponding limit we say that G is an F-limit group. The paper is devoted to a description of F-limit groups.

Mathematics Subject Classification (2000)

20E06 20E18 20F69 


Thompson’s Group F limit groups HNN-extensions free products group laws 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abert, Group laws and free subgroups in topological groups, Bull. London Math. Soc. 37 (2005), 525–534.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B. Baumslag, Residually free groups, Proc. London Math. Soc. (3), 17:402–418, 1967.Google Scholar
  3. [3]
    G. Baumslag, On generalised free products, Math. Z., 78:423–438, 1962.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    M.G. Brin, C.C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985), 485–498.zbMATHMathSciNetGoogle Scholar
  5. [5]
    J.W. Cannon, W.J. Floyd, W.R. Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (1996), 215–256.Google Scholar
  6. [6]
    B. Fine, A.M. Gaglione, A. Myasnikov, G. Rosenberger, D. Spellman, A classification of fully residually free groups of rank three or less, J. Algebra, 200 (2):571–605, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    C. Champetier, V. Guirardel, Limit groups as limits of free groups: compactifying the set of free groups, Israel J. Math. 146 (2005), 1–76.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    V. Guba, M. Sapir, Diagram groups, Memoirs of the American Mathematical Society, Volume 130, Number 620, November 1997.Google Scholar
  9. [9]
    R. Lyndon, P. Schupp, Combinatorial group theory, Springer, Berlin 1977.zbMATHGoogle Scholar
  10. [10]
    L. Guyot, Y. Stalder, Limits of Baumslag-Solitar groups and other families of marked groups with parameters, eprint arXiv:math/0507236.Google Scholar
  11. [11]
    M. Kassabov, F. Matucci, The simultaneous conjugacy problem in Thompson’s group F, eprint arXiv:math/0607167.Google Scholar
  12. [12]
    Z. Sela, Diophantine geometry over groups I: Makanin-Razborov diagrams, Publications Mathématiques de l’IHES 93(2001), 31–105.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Roland Zarzycki
    • 1
  1. 1.Institute of PhilosophyUniversity of WroclawWroclawPoland

Personalised recommendations