Generating Tuples of Virtually Free Groups

  • Richard Weidmann
Conference paper
Part of the Trends in Mathematics book series (TM)


We give a complete description of all generating tuples of a virtually free group, i.e., we give a parametrization of Epi(Fn, Г) where n ∈ N and G is a virtually free group.

Mathematics Subject Classification (2000)

20F05 20F67 


Nielsen equivalence virtually free groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D]
    M.J. Dunwoody Folding sequences Geometry & Topology Monographs. Volume 1: The Epstein Birthday Schrift, 139, 158.Google Scholar
  2. [Del]
    T. Delzant, Sous-groupes à deux générateurs des groupes hyperboliques. E. Ghys, A. Haefliger and A. erjovski (ed.) et al., Group theory from a geometrical viewpoint. Singapore: World Scientific., 1991, 177–189.Google Scholar
  3. [HW]
    M. Heusener and R. Weidmann, Generating Pairs of 2-Bridge knot groups, to appear in Geom. Ded.Google Scholar
  4. [KW1]
    I. Kapovich and R. Weidmann, Freely indecomposable groups acting on hyperbolic spaces, IJAC 14 (2004), 115–171.zbMATHMathSciNetGoogle Scholar
  5. [KW2]
    I. Kapovich and R. Weidmann, Kleinian groups and the rank problem, Geometry and Topology 9 (2005), 375–402.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [KMW]
    I. Kapovich, A. Myasnikov and R. Weidmann. A-graphs, foldings and the induced splittings IJAC 15 no.1, 2005, 95–128.zbMATHMathSciNetGoogle Scholar
  7. [KM]
    O. Kharlampovich and M. Myasnikov, Irreducible Affine Varieties over a free group, J. Algebra 200, 1998, 517–570.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [KPS]
    A. Karrass, A. Pietrowski and D. Solitar, Finite and infinite cyclic extensions of free groups. Collection of articles dedicated to the memory of Hanna Neumann IV., J. Austral. Math. Soc. 16, 1973, 458–466.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [L]
    P.A. Linnell, On accessibility of groups J. Pure Appl. Algebra 30, 1983, 39–46.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [M]
    A.I. Malcev, On isomorphic representations of infinite groups by matrices Mat. Sb. 8, 1940, 405–422.MathSciNetGoogle Scholar
  11. [N0]
    J. Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78, 1917, 385–397.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [N]
    J. Nielsen, Om Regning med ikke kommutative Faktorer og dens Anvendlese i Gruppenteorien, Mat. Tidskrift B, 1921, 77–94.Google Scholar
  13. [P]
    M.R. Pettet, Virtually free groups with finitely many outer automorphisms, Trans. AMS 349, no. 10, 1997, 4565–4587.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [R]
    A.A. Razborov, On systems of Equations in a Free Group, PhD thesis, Steklov Math. Inst., 1987.Google Scholar
  15. [Sc]
    G.P. Scott The geometries of 3-manifolds Bull. Lond. Math. Soc. 15, 1983, 401–487.zbMATHCrossRefGoogle Scholar
  16. [S]
    Z. Sela, Diophantine geometry over groups I. Makanin Razborov Diagrams. Publ. Math. IHES 93, 2001, 31–105.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [St]
    J. Stallings, Groups of cohomological dimension one. Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVIII, New York, 1968), 1970, 124–128.MathSciNetGoogle Scholar
  18. [W]
    R. Weidmann, On accessibility of finitely generated groups, to appear in Q. J. Math.Google Scholar
  19. [Z]
    H. Zieschang, Über die Nielsensche Kürzungsmethode in freien Produkten mit Amalgam, Inv.Math. 10, 4–37, 1970.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Richard Weidmann
    • 1
  1. 1.Department of MathematicsHeriot Watt-UniversityEdinburghUK

Personalised recommendations