Skip to main content

From Diff (S 1) to Univalent Functions. Cases of Degeneracy

  • Conference paper
Analysis and Mathematical Physics

Part of the book series: Trends in Mathematics ((TM))

  • 1812 Accesses

Abstract

We explain in detail how to obtain the Kirillov vector fields (Lk)k∈Z on the space of univalent functions inside the unit disk. Following Kirillov, they can be produced from perturbations by vectors (eikθ)k∈Z of diffeomorphisms of the circle. We give a second approach to the construction of the vector fields. In our approach, the Lagrange series for the inverse function plays an important part. We relate the polynomial coefficients in these series to the polynomial coefficients in Kirillov vector fields. By investigation of degenerate cases, we look for the functions \( f(z) = z + \sum\nolimits_{n \geqslant 1} {a_n z^{n + 1} } \) such that Lkf = L-k f for k ≥1. We find that f(z) must satisfy the differential equation:

$$ \left[ {\frac{{z^2 w}} {{1 - zw}} + \frac{{zw}} {{w - z}}} \right]f'(z) - f(z) - \frac{{w^2 f'(w)^2 }} {{f(w)^2 }} \times \frac{{f(z)^2 }} {{f(w) - f(z)}} = 0. $$
((*))

We prove that the only solutions of (*) are Koebe functions. On the other hand, we show that the vector fields (T k )k∈Z image of the (Lk)k∈Z through the map \( g(z) = \frac{1} {{f(\tfrac{1} {z})}} \) can be obtained directly as the (Lk) from perturbations of diffeomorphisms of the circle.

The author thanks Paul Malliavin for discussions and for having introduced her to the classical book by A.C. Schaeffer and D.C. Spencer, Ref. [15]. Also thanks to Nabil Bedjaoui, Université de Picardie Jules Verne, for his help in the preparation of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Airault, P. Malliavin, Unitarizing probability measures for representations of Virasoro algebra. J. Math. Pures Appl. 80, 6, (2001), 627–667.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Airault, J. Ren, An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sc. Math. 126, 5, (2002), 343–367.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Airault, V. Bogachev, Realization of Virasoro unitarizing measures on the set of Jordan curves. C. Rend. Acad Sc. Paris. Série I 336, (2003), 429–434.

    MATH  MathSciNet  Google Scholar 

  4. H. Airault, A. Bouali, Differential calculus on the Faber polynomials. Bull. Sc. Math. 130, (2006), 179–222 and H. Airault, A. Bouali, Short communications, Analyse, Madrid 2006.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3, (2008), no. 8, 449–456.

    MATH  MathSciNet  Google Scholar 

  6. H. Airault and Y. Neretin, On the action of Virasoro algebra on the space of univalent functions. Bull. Sc. Math. 132, (2008), 27–39.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Airault, Symmetric sums associated to the factorization of the Grunsky coefficients. In John Harnad, Pavel Winternitz (Eds.) Groups and symmetries: From the Neolithic Scots to John McKay (Montreal April 2007), 47, A.M.S. Proceedings (2009).

    Google Scholar 

  8. C. Badea and S. Grivaux, Faber hypercyclic operators, Israel J. Math., 165, (2008), 43–65.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Bouali, Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. Bull. Sc. Math. 130 (2006) 49–70.

    Article  MATH  MathSciNet  Google Scholar 

  10. A.A. Kirillov, Geometric approach to discrete series of unireps for Virasoro. J. Math. Pures Appl. 77 (1998) 735–746.

    MATH  MathSciNet  Google Scholar 

  11. A.A. Kirillov, D.V. Yuriev, Kähler geometry of the infinite-dimensional space M = Diff(+(S1)/Rot(S1). Functional Analysis Appl. 21, 4, (1987), 284–294.

    Article  MATH  Google Scholar 

  12. I. Markina, D. Prokhorov, A. Vasiliev, Subriemannian geometry of the coefficients of univalent functions. J. Funct. Anal. 245 (2007) 475–492.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Nag, Singular Cauchy integrals and conformal welding on Jordan curves. Annales Acad. Scient. Fennicae Mathematica, 21, (1996), 81–88.

    MATH  MathSciNet  Google Scholar 

  14. Yu.A. Neretin, Representations of Virasoro and affine Lie algebras. Encyclopedia of Mathematical Sciences, 22, Springer Verlag (1994) 157–225.

    MathSciNet  Google Scholar 

  15. A.C. Schaeffer, D.C. Spencer, Coefficient regions for Schlicht functions. Colloquium Publications 35 American Math. Soc. (1950).

    Google Scholar 

  16. M. Schiffer, Faber polynomials in the theory of univalent functions. Bull. Amer. Soc., 54 (1948) 503–517.

    Article  MATH  MathSciNet  Google Scholar 

  17. P.G. Todorov, On the Faber polynomials of the univalent functions of the class σ. J. of Math. Anal. and Appl., 162 (1991) 268–276.

    Article  MATH  Google Scholar 

  18. S.M. Zemyan, On the coefficient problem for the Schwarzian derivative. Ann. Acad. Sci. Fenn., 17 (1992) 221–240.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Airault, H. (2009). From Diff (S 1) to Univalent Functions. Cases of Degeneracy. In: Gustafsson, B., Vasil’ev, A. (eds) Analysis and Mathematical Physics. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9906-1_1

Download citation

Publish with us

Policies and ethics