Skip to main content

On Negative Spectrum of Schrödinger Type Operators

  • Conference paper
Analysis, Partial Differential Equations and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 193))

  • 1161 Accesses

Abstract

The classical Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities in their general form allow one to estimate the number of negative eigenvalues N = # i < 0} and the sums S γ = ∑|λ i |γ for a wide class of Schrödinger operators. We will present here some new examples (Anderson Hamiltonian, operators on lattices, quantum graphs and groups). In some cases below, the parabolic semigroup has an exponential fractional decay at t→∞. This makes it possible to consider potentials decaying very slowly (logarithmical) at infinity. We also will discuss the case of small local dimension of the underlying manifold, which is usually not covered by the general theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Birman, M. Solomyak, Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Advances in Soviet Mathematics, 7, (1991).

    Google Scholar 

  2. R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operator, Birkhäuser Verlag, Basel, Boston, Berlin, 1990.

    Google Scholar 

  3. K. Chen, S. Molchanov, B. Vainberg, Localization on Avron-Exner-Last graphs: I. Local perturbations, Contemporary Mathematics, v. 415, AMS (2006), pp. 81–92.

    MathSciNet  Google Scholar 

  4. M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. Math., (2) 106 (1977), 93–100.

    Article  MathSciNet  Google Scholar 

  5. I. Daubichies, An uncertainty principle for fermions with generalized kinetic energy, Comm. Math. Phys., 90 (1983), pp. 511–520.

    Article  MathSciNet  Google Scholar 

  6. M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of the certain Markov process expectations for large time I.II. Comm. Pure Appl. Math. 1975, 28, pp. 1–47.

    MATH  MathSciNet  Google Scholar 

  7. M.D. Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure Appl. Math., 28, (1975) no. 4, 525–565.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. McKean, Stochastic integrals. Reprint of the 1969 edition, with errata. AMS Chelsea Publishing, Providence, RI, 2005.

    MATH  Google Scholar 

  9. E. Lieb, Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Amer. Math. Soc., 82 (1976), no. 5, 751–753.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem. Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pp. 241–252

    Google Scholar 

  11. E. Lieb, W. Thirring, Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Letter, 35 (1975), 687–689.

    Article  Google Scholar 

  12. E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities, in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann (E. Lieb, B. Simon, and A. Wightman, eds.), pp. 269–303, Princeton University Press, Princeton, 1976.

    Google Scholar 

  13. S. Molchanov, B. Vainberg, On general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities, arXiv:0812.2968.

    Google Scholar 

  14. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, N.Y., 1978.

    MATH  Google Scholar 

  15. G. Rozenblum, Distribution of the discrete spectrum of singular differential operators, (Russian) Dokl. Acad. Nauk SSSR, 202 (1972), 1012–1015; translation in “Soviet Math. Dokl.”, 13 (1972), 245-249.

    Google Scholar 

  16. G. Rozenblum, M. Solomyak, CLR-estimate for the Generators of Positivity Preserving and Positively Dominated Semigroups, (Russian) Algebra i Analiz, 9 (1997), no. 6, 214–236; translation in “St. Petersburg Math. J.”, 9 (1998), no. 6, 1195–1211.

    Google Scholar 

  17. G. Rozenblum, M. Solomyak, Counting Schrödinger boundstates: semiclassics and beyond, Sobolev Spaces in Mathematics. II. Applications in Analysis and Partial Differential Equations, International Mathematical Series, 8, Springer and T. Rozhkovskaya Publishers, 2008, 329–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To our dear friend Vladimir Maz’ya

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Molchanov, S., Vainberg, B. (2009). On Negative Spectrum of Schrödinger Type Operators. In: Cialdea, A., Ricci, P.E., Lanzara, F. (eds) Analysis, Partial Differential Equations and Applications. Operator Theory: Advances and Applications, vol 193. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9898-9_15

Download citation

Publish with us

Policies and ethics