Skip to main content

On the Well-posedness of the Dirichlet Problem in Certain Classes of Nontangentially Accessible Domains

  • Conference paper
Book cover Analysis, Partial Differential Equations and Applications

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 193))

  • 1163 Accesses

Abstract

We prove that if Ω ⊂ ℝn is a bounded NTA domain (in the sense of Jerison and Kenig) with an Ahlfors regular boundary, and which satisfies a uniform exterior ball condition, then the Dirichlet problem

$$ \Delta u = 0 in \Omega , u|_{\partial \Omega } = f \in L^p (\partial \Omega , d\sigma ), $$
(1)

, has a unique solution for any p ∈ (1,∞). This solution satisfies natural nontangential maximal function estimates and can be represented as

$$ u(y) = - \int_{\partial \Omega } {\partial _{\nu (x)} G(x,y)f(x) d\sigma (x),} y \in \Omega . $$
(1)

. Above, ν denotes the outward unit normal to Ω and G(·,·) stands for the Green function associated with Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bennewitz and J.L. Lewis, On weak reverse Hölder inequalities for nondoubling harmonic measures, Complex Var. Theory Appl. 49 (2004), no. 7–9, 571–582.

    MATH  MathSciNet  Google Scholar 

  2. R.R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.

    MATH  MathSciNet  Google Scholar 

  3. R.R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645.

    Article  MATH  MathSciNet  Google Scholar 

  4. B.E.J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288.

    Article  MATH  MathSciNet  Google Scholar 

  5. B.E.J. Dahlberg and C.E. Kenig, Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains, Ann. of Math. 125 (1987), no. 3, 437–465.

    Article  MathSciNet  Google Scholar 

  6. G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. David and S. Semmes, Singular Integrals and Rectifiable Sets inn: Beyond Lipschitz Graphs, Astérisque No. 193, 1991.

    Google Scholar 

  8. G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, AMS Series, 1993.

    Google Scholar 

  9. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  10. E.B. Fabes, M. Jodeit Jr. and N.M. Rivière, Potential techniques for boundary value problems on C 1-domains, Acta Math. 141 (1978), no. 3–4, 165–186.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Federer, Geometric Measure Theory, reprint of the 1969 edition, Springer-Verlag, 1996.

    Google Scholar 

  12. M. Grüter and K.-O., Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), no. 3, 303–342.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Hofmann, M. Mitrea and M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains, preprint (2007).

    Google Scholar 

  14. D. Jerison and C.E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Advances in Mathematics 46 (1982), 80–147.

    Article  MATH  MathSciNet  Google Scholar 

  15. C.E. Kenig, Harmonic analysis techniques for second-order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, Vol. 83, AMS, Providence, RI, 1994.

    Google Scholar 

  16. C.E. Kenig and T. Toro, Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math. 150 (1999), no. 2, 369–454.

    Article  MATH  MathSciNet  Google Scholar 

  17. C.E. Kenig and T. Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 323–401.

    MATH  MathSciNet  Google Scholar 

  18. H. Poincaré, Sur les équations aux dérivée partielles de la physique mathématiques, Amer. J. Math. 12 (1890), 211–294.

    Article  MathSciNet  Google Scholar 

  19. S. Semmes, Chord-arc surfaces with small constant. I, Adv. Math. 85 (1991), no. 2, 198–223.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Semmes, Analysis vs. geometry on a class of rectifiable hypersurfaces inn, Indiana Univ. Math. J. 39 (1990), no. 4, 1005–1035.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.

    MATH  Google Scholar 

  22. J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics Vol. 1391, Springer-Verlag, 1989.

    Google Scholar 

  23. N. Wiener, The Dirichlet problem, J. Math. Phys. 3 (1924), 127–146.

    Google Scholar 

  24. W. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated with great pleasure to Vladimir Maz’ya on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Mitrea, D., Mitrea, M. (2009). On the Well-posedness of the Dirichlet Problem in Certain Classes of Nontangentially Accessible Domains. In: Cialdea, A., Ricci, P.E., Lanzara, F. (eds) Analysis, Partial Differential Equations and Applications. Operator Theory: Advances and Applications, vol 193. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9898-9_14

Download citation

Publish with us

Policies and ethics